docker run -p 8888:8888 -p 6006:6006 --name udacity-tensorflow -it lopezco/udacity-tensorflow
Note that if you ever exit the container, you can return to it using:
docker start -ai udacity-tensorflow
You can set some environment variables while running the container using the --env
parameter as follows:
--env JUPYTER_PASSWORD="my_password" --env JUPYTER_PORT=8888 --env TENSORBOARD_LOGDIR="./logs" --env TENSORBOARD_PORT=6006
- Jupyter: http://localhost:8888
- Tensorboard: http://localhost:6006
Install docker-compose following this guide. Then, download this docker-compose file.
docker-compose up [-d]
This command will pull the image from docker-hub and automatically run the container. The parameter -d
is optional (run in detached mode)
Note that if you ever stop the container, you can restart it using:
docker-compose up [-d]
You can set some environment variables in the docker-compose file to control the container:
environment:
JUPYTER_PASSWORD: "my_password"
JUPYTER_PORT: 8899
TENSORBOARD_LOGDIR: ./logs
TENSORBOARD_PORT: 8008
- Jupyter: http://localhost:8899
- Tensorboard: http://localhost:8008
## History of base image
Base image: gcr.io/tensorflow/tensorflow:latest
- 0.1.0: Initial release.
- 0.2.0: Many fixes, including lower memory footprint and support for Python 3.
- 0.3.0: Use 0.7.1 release.
- 0.4.0: Move notMMNIST data for Google Cloud.
- 0.5.0: Actually use 0.7.1 release.
- 0.6.0: Update to TF 0.10.0, add libjpeg (for Pillow).
- 1.0.0: Update to TF 1.0.0 release.
- 1.1.0: Update to TF 1.3.0 release.