Pure Python implementation of the squarify treemap layout algorithm.
Based on algorithm from Bruls, Huizing, van Wijk, "Squarified Treemaps", but implements it differently.
Compatible with Python 2 and Python 3.
pip install squarify
The main function is squarify
and it requires two things:
- A coordinate system comprising values for the origin (
x
andy
) and the width/height (dx
anddy
). - A list of positive values sorted from largest to smallest and normalized to
the total area, i.e.,
dx * dy
).
The function returns a list of dict
s (i.e., JSON objects), each one a
rectangle with coordinates corresponding to the given coordinate system and area
proportional to the corresponding value. Here's an example rectangle:
{
"x": 0.0,
"y": 0.0,
"dx": 327.7,
"dy": 433.0
}
The rectangles can be easily plotted using, for example, d3.js.
There is also a version of squarify
called padded_squarify
that returns
rectangles that, when laid out, have a bit of padding to show their borders.
The helper function normalize_sizes
will compute the normalized values, and
the helper function plot
will generate a Matplotlib-based treemap
visualization of your data (see docstring).
import squarify
# these values define the coordinate system for the returned rectangles
# the values will range from x to x + width and y to y + height
x = 0.
y = 0.
width = 700.
height = 433.
values = [500, 433, 78, 25, 25, 7]
# values must be sorted descending (and positive, obviously)
values.sort(reverse=True)
# the sum of the values must equal the total area to be laid out
# i.e., sum(values) == width * height
values = squarify.normalize_sizes(values, width, height)
# returns a list of rectangles
rects = squarify.squarify(values, x, y, width, height)
# padded rectangles will probably visualize better for certain cases
padded_rects = squarify.padded_squarify(values, x, y, width, height)
The variable rects
contains
[
{
"dy": 433,
"dx": 327.7153558052434,
"x": 0,
"y": 0
},
{
"dy": 330.0862676056338,
"dx": 372.2846441947566,
"x": 327.7153558052434,
"y": 0
},
{
"dy": 102.9137323943662,
"dx": 215.0977944236371,
"x": 327.7153558052434,
"y": 330.0862676056338
},
{
"dy": 102.9137323943662,
"dx": 68.94160077680677,
"x": 542.8131502288805,
"y": 330.0862676056338
},
{
"dy": 80.40135343309854,
"dx": 88.24524899431273,
"x": 611.7547510056874,
"y": 330.0862676056338
},
{
"dy": 22.51237896126767,
"dx": 88.2452489943124,
"x": 611.7547510056874,
"y": 410.4876210387323
}
]