/QUIZ

implement of "An Arbitrary Volumetric Point Matching Method for Medical Image Registration"

Primary LanguagePythonMIT LicenseMIT

QUIZ: An Arbitrary Volumetric Point Matching Method for Medical Image Registration

This repo open-sources the TCIA Pelvic data we have calibrated and provides programmable code. You can find the raw data (with image data) at this https://wiki.cancerimagingarchive.net/display/Public/Pelvic-Reference-Data link. This repo only provides the corrected landmark file.

Publication

You can find out how we used the altered dataset in our article. QUIZ: An Arbitrary Volumetric Point Matching Method for Medical Image Registration

How to use this Dataset

All landmarks are stored in the keypoints folder with patient names and in .npy format

You can visualize all point pairs by executing the show_gif.py file or in gif_dir

python show_gif.py

It is worth noting that we discarded point pair information for several samples, among them 'Pelvic-Ref-001' and 'Pelvic-Ref-016' and 'Pelvic-Ref-051'

If you want to apply this dataset to your own dataset, you can refer to dataset.py

Citation

If you use the data we provide, please cite our articles and follow TCIA's licenses!

@article{LIU2024102336,
title = {QUIZ: An arbitrary volumetric point matching method for medical image registration},
journal = {Computerized Medical Imaging and Graphics},
pages = {102336},
year = {2024},
issn = {0895-6111},
doi = {https://doi.org/10.1016/j.compmedimag.2024.102336},
url = {https://www.sciencedirect.com/science/article/pii/S0895611124000132},
author = {Lin Liu and Xinxin Fan and Haoyang Liu and Chulong Zhang and Weibin Kong and Jingjing Dai and Yuming Jiang and Yaoqin Xie and Xiaokun Liang},
}

Acknowledgements

Yorke, A. A., McDonald, G. C., Solis, D., & Guerrero, T. (2019). Pelvic Reference Data (Version 1) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.2019.WOSKQ5OO

A. Yorke, A., McDonald, G. C., Solis, D., & Guerrero, T. (2021) Quality Assurance of Image Registration Using Combinatorial Rigid Registration Optimization (CORRO). J. Cancer Research and Cellular Therapeutics. 5(2). DOI: https://doi.org/10.31579/2640-1053/076

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. In Journal of Digital Imaging (Vol. 26, Issue 6, pp. 1045–1057). Springer Science and Business Media LLC. https://doi.org/10.1007/s10278-013-9622-7

orke, A, Solis, D., Jr. and Guerrero, T. (2020), A feasibility study to estimate optimal rigid‐body registration using combinatorial rigid registration optimization (CORRO). J. Appl. Clin. Med. Phys., 21: 14-22. https://doi.org/10.1002/acm2.12965