Faster R-CNN Inference with Minimum Implementation
A minimum implementation based on mask-rcnn-benchmark, aiming at easier understanding of the 2-stage object detection framework using Faster R-CNN as an example. See the Pipeline to understand how it works!
Let's make the framework more specific, and easier to understand!
What's New
- verified inference of Faster R-CNN C4 using pretrained weights
Inference
Easy enough!
python tools/demo.py --image {image file path}
Installation
Docker
Build image with defaults (CUDA=9.0
, CUDNN=7
, FORCE_CUDA=1
):
nvidia-docker build -t faster_rcnn_minimum docker/
Build image with other CUDA and CUDNN versions:
nvidia-docker build -t faster_rcnn_minimum --build-arg CUDA=9.2 --build-arg CUDNN=7 docker/
conda
conda create --name faster_rcnn_minimum
conda activate faster_rcnn_minimum
conda install ipython
pip install ninja yacs cython matplotlib tqdm
conda install -c pytorch pytorch-nightly torchvision cudatoolkit=9.0
python setup.py build develop