Relation-Aware Transformer for Portfolio Policy Learning
Repo inspired from https://github.com/Ivsxk/RAT / https://www.ijcai.org/proceedings/2020/641 with refactored code and binance data provider.
Python 3.8
pip install .
rat train default_configs
rat test default_configs
exemple json input:
{
"database_path": "path/datasets",
"train_range": {
"start": "2021-01-01",
"end": "2021-03-10"
},
"val_range": {
"start": "2021-03-10",
"end": "2021-03-15"
},
"test_range": {
"start": "2021-03-15",
"end": "2021-04-01"
},
"quote_asset": "USDT",
"selected_symbols": ["BTCUSDT", "LTCUSDT", "ADAUSDT", "XRPUSDT", "ZECUSDT", "XLMUSDT"],
"selected_features": ["close", "high", "low", "open"],
"freq": "30T",
"total_step": 50000,
"output_step": 1000,
"x_window_size": 31,
"batch_size": 256,
"trading_consumption": 0.0025,
"variance_penalty": 0.0,
"cost_penalty": 0.0,
"learning_rate": 0.0001,
"model_dir": "path/runs",
"model_name": "first",
"model_index": 1,
"model_dim": 12,
"multihead_num": 2,
"local_context_length": 5,
"weight_decay": 5e-8,
"daily_interest_rate": 0.001,
"buffer_bias_ratio": 5e-5,
"log_dir": "/path.logs",
"device": "cuda:0"
}