Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files(the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions :
The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Testing
Compiled and tested with Visual Studio 2017, and g++ 7.3.0, with Boost version 1.68.
This quick start guide is meant as a very brief overview of some of the things
that can be done with NumCpp. For a full breakdown of everything available
in the NumCpp library please visit the Full Documentation.
CONTAINERS
The main data structure in NumpCpp is the NdArray. It is inherently a 2D array class, with 1D arrays being implemented as 1xN arrays. There is also a DataCube class that is provided as a convenience container for storing an array of 2D NdArrays, but it has limited usefulness past a simple container.
NumPy
NumCpp
a = np.array([[1, 2], [3, 4], [5, 6]])
nc::NdArray<int> a = { {1, 2}, {3, 4}, {5, 6} }
a.reshape([2, 3])
a.reshape(2, 3)
a.astype(np.double)
a.astype<double>()
INITIALIZERS
Many initializer functions are provided that return NdArrays for common needs.
NumPy
NumCpp
np.linspace(1, 10, 5)
nc::linspace<dtype>(1, 10, 5)
np.arange(3, 7)
nc::arrange<dtype>(3, 7)
np.eye(4)
nc::eye<dtype>(4)
np.zeros([3, 4])
nc::zeros<dtype>(3, 4)
nc::NdArray<dtype>(3, 4) a = 0
np.ones([3, 4])
nc::ones<dtype>(3, 4)
nc::NdArray<dtype>(3, 4) a = 1
np.nans([3, 4])
nc::nans<double>(3, 4)
nc::NdArray<double>(3, 4) a = nc::constants::nan
np.empty([3, 4])
nc::empty<dtype>(3, 4)
nc::NdArray<dtype>(3, 4) a;
SLICING/BROADCASTING
NumpCpp offers NumPy style slicing and broadcasting.
NumPy
NumCpp
a[2, 3]
a(2, 3)
a[2:5, 5:8]
a(nc::Slice(2, 5), nc::Slice(5, 8))
a({2, 5}, {5, 8})
a[:, 7]
a(a.rSlice(), 7)
a[a > 5]
a[a > 50]
a[a > 5] = 0
a.putMask(a > 50, 666)
RANDOM
The random module provides simple ways to create random arrays.
NumPy
NumCpp
np.random.seed(666)
nc::Random<>::seed(666)
np.random.randn(3, 4)
nc::Random<double>::randn(nc::Shape(3,4))
nc::Random<double>::randn({3, 4})
np.random.randint(0, 10, [3, 4])
nc::Random<int>::randInt(nc::Shape(3,4),0,10)
nc::Random<int>::randInt({3, 4},0,10)
np.random.rand(3, 4)
nc::Random<double>::rand(nc::Shape(3,4))
nc::Random<double>::rand({3, 4})
np.random.choice(a, 3)
nc::Random<dtype>::choice(a, 3)
CONCATENATION
Many ways to concatenate NdArray are available.
NumPy
NumCpp
np.stack([a, b, c], axis=0)
nc::stack({a, b, c}, nc::Axis::ROW)
np.vstack([a, b, c])
nc::vstack({a, b, c})
np.hstack([a, b, c])
nc::hstack({a, b, c})
np.append(a, b, axis=1)
nc::append(a, b, nc::Axis::COL)
DIAGONAL, TRIANGULAR, AND FLIP
The following return new NdArrays.
NumPy
NumCpp
np.diagonal(a)
nc::diagonal(a)
np.triu(a)
nc::triu(a)
np.tril(a)
nc::tril(a)
np.flip(a, axis=0)
nc::flip(a, nc::Axis::ROW)
np.flipud(a)
nc::flipud(a)
np.fliplr(a)
nc::fliplr(a)
ITERATION
NumpCpp follows the idioms of the C++ STL providing iterator pairs to iterate on arrays in different fashions.
NumPy
NumCpp
for value in a
for(auto it = a.begin(); it < a.end(); ++it)
for(auto& value : a)
LOGICAL
Logical FUNCTIONS in NumpCpp behave the same as NumPy.
NumPy
NumCpp
np.where(a > 5, a, b)
nc::where(a > 5, a, b)
np.any(a)
nc::any(a)
np.all(a)
nc::all(a)
np.logical_and(a, b)
nc::logical_and(a, b)
np.logical_or(a, b)
nc::logical_or(a, b)
np.isclose(a, b)
nc::isclose(a, b)
np.allclose(a, b)
nc::allclose(a, b)
COMPARISONS
NumPy
NumCpp
np.equal(a, b)
nc::equal(a, b)
a == b
np.not_equal(a, b)
nc::not_equal(a, b)
a != b
np.nonzero(a)
nc::nonzero(a)
MINIMUM, MAXIMUM, SORTING
NumPy
NumCpp
np.min(a)
nc::min(a)
np.max(a)
nc::max(a)
np.argmin(a)
nc::argmin(a)
np.argmax(a)
nc::argmax(a)
np.sort(a, axis=0)
nc::sort(a, nc::Axis::ROW)
np.argsort(a, axis=1)
nc::argsort(a, nc::Axis::COL)
np.unique(a)
nc::unique(a)
np.setdiff1d(a, b)
nc::setdiff1d(a, b)
np.diff(a)
nc::diff(a)
REDUCERS
Reducers accumulate values of NdArrays along specified axes. When no axis is specified, values are accumulated along all axes.
NumPy
NumCpp
np.sum(a)
nc::sum<dtypeOut>(a)
np.sum(a, axis=0)
nc::sum<dtypeOut>(a, nc::Axis::ROW)
np.prod(a)
nc::prod<dtypeOut>(a)
np.prod(a, axis=0)
nc::prod<dtypeOut>(a, nc::Axis::ROW)
np.mean(a)
nc::mean(a)
np.mean(a, axis=0)
nc::mean(a, nc::Axis::ROW)
np.count_nonzero(a)
nc::count_nonzero(a)
np.count_nonzero(a, axis=0)
nc::count_nonzero(a, nc::Axis::ROW)
I/O
Print and file output methods. All NumpCpp classes support a print() method and << stream operators.
NumPy
NumCpp
print(a)
a.print()
std::cout << a
a.tofile(filename, sep=’\n’)
a.tofile(filename, "\n")
np.fromfile(filename, sep=’\n’)
nc::fromfile<dtype>(filename, \n")
np.dump(a, filename)
nc::dump(a, filename)
np.load(filename)
nc::load<dtype>(filename)
MATHEMATICAL FUNCTIONS
NumpCpp universal functions are provided for a large set number of mathematical functions.