/BVQA_Benchmark

A performance benchmark for blind video quality assessment (BVQA) models

Primary LanguagePythonMIT LicenseMIT

BVQA_Benchmark

A performance benchmark for blind video quality assessment (BVQA) models on user-generated databases, for the UGC-VQA problem studied in the paper UGC-VQA: Benchmarking blind video quality assessment for user generated content.

Pre-requisites

  • >= python 3.6.7
  • sklearn

Usage (feature-based model only)

Compute feature matrix on a given dataset and put it in data/ folder, with MOS array stored in the same order (We have provided the MOS arrays of three UGC datasets). The code evaluates the extracted features through 100 iterations of train-test splits and returns the median (std) SRCC/KRCC/PLCC/RMSE performances. Note that it is not applicable for deep learning based models.

Run demo (BRISUQE x KoNViD-1k)
$ python src/evaluate_bvqa_features.py
Custom usage
$ python src/evaluate_bvqa_features.py [-h] [--model_name MODEL_NAME]
                                   [--dataset_name DATASET_NAME]
                                   [--feature_file FEATURE_FILE]
                                   [--mos_file MOS_FILE] [--out_file OUT_FILE]
                                   [--color_only] [--log_short] [--use_parallel]
                                   [--num_iterations NUM_ITERATIONS]
                                   [--max_thread_count MAX_THREAD_COUNT]

UGC-VQA Datasets

BVQA Dataset Download Paper
KoNViD-1k (2017) KoNViD-1k Hosu et al. QoMEX'17
LIVE-VQC (2018) LIVE-VQC Sinno et al. TIP'19
YouTube-UGC (2019) YouTube-UGC Wang et al. MMSP'19

Evaluated BIQA/BVQA Models

Methods Download Paper
BRISQUE BRISQUE Mittal et al. TIP'12
NIQE NIQE Mittal et al. TIP'13
ILNIQE ILNIQE Zhang et al. TIP'15
GM-LOG GM-LOG Xue et al. TIP'14
HIGRADE HIGRADE Kundu et al. TIP'17
FRIQUEE FRIQUEE Ghadiyaram et al. JoV'17
CORNIA BIQC_Toolbox Ye et al. CVPR'12
HOSA BIQA_Toolbox Xu et al. TIP'16
VIIDEO VIIDEO Mittal et al. TIP'16
V-BLIINDS V-BLIINDS Saad et al. TIP'14
TLVQM nr-vqa-consumervideo Korhenen et al. TIP'19
VIDEVAL VIDEVAL_release Tu et al. CoRR'20

Results

The median SRCC (std SRCC) of 100 repititions of different methods on different datasets.

Methods KoNViD-1k LIVE-VQC YouTube-UGC
BRISQUE 0.6567 (0.0351) 0.5925 (0.0681) 0.3820 (0.0519)
NIQE 0.5417 (0.0347) 0.5957 (0.0571) 0.2379 (0.0487)
IL-NIQE 0.5264 (0.0294) 0.5037 (0.0712) 0.2918 (0.0502)
GM-LOG 0.6578 (0.0324) 0.5881 (0.0683) 0.3678 (0.0589)
HIGRADE 0.7206 (0.0302) 0.6103 (0.0680) 0.7376 (0.0338)
FRIQUEE 0.7472 (0.0263) 0.6579 (0.0536) 0.7652 (0.0301)
CORNIA 0.7169 (0.0245) 0.6719 (0.0473) 0.5972 (0.0413)
HOSA 0.7654 (0.0224) 0.6873 (0.0462) 0.6025 (0.0344)
VGG-19 0.7741 (0.0288) 0.6568 (0.0536) 0.7025 (0.0281)
ResNet-50 0.8018 (0.0255) 0.6636 (0.0511) 0.7183 (0.0281)
VIIDEO 0.2988 (0.0561) 0.0332 (0.0856) 0.0580 (0.0536)
V-BLIINDS 0.7101 (0.0314) 0.6939 (0.0502) 0.5590 (0.0496)
TLVQM 0.7729 (0.0242) 0.7988 (0.0365) 0.6693 (0.0306)
VIDEVAL 0.7832 (0.0216) 0.7522 (0.0390) 0.7787 (0.0254)

The median PLCC (std PLCC) of 100 repititions of different methods on different UGC-VQA datasets.

Methods KoNViD-1k LIVE-VQC YouTube-UGC
BRISQUE 0.6576 (0.0342) 0.6380 (0.0632) 0.3952 (0.0486)
NIQE 0.5530 (0.0337) 0.6286 (0.0512) 0.2776 (0.0431)
IL-NIQE 0.5400 (0.0337) 0.5437 (0.0707) 0.3302 (0.0579)
GM-LOG 0.6636 (0.0315) 0.6212 (0.0636) 0.3920 (0.0549)
HIGRADE 0.7269 (0.0287) 0.6332 (0.0652) 0.7216 (0.0334)
FRIQUEE 0.7482 (0.0257) 0.7000 (0.0587) 0.7571 (0.0324)
CORNIA 0.7135 (0.0236) 0.7183 (0.0420) 0.6057 (0.0399)
HOSA 0.7664 (0.0207) 0.7414 (0.0410) 0.6047 (0.0347)
VGG-19 0.7845 (0.0246) 0.7160 (0.0481) 0.6997 (0.0281)
ResNet-50 0.8104 (0.0229) 0.7205 (0.0434) 0.7097 (0.0276)
VIIDEO 0.3002 (0.0539) 0.2146 (0.0903) 0.1534 (0.0498)
V-BLIINDS 0.7037 (0.0301) 0.7178 (0.0500) 0.5551 (0.0465)
TLVQM 0.7688 (0.0238) 0.8025 (0.0360) 0.6590 (0.0302)
VIDEVAL 0.7803 (0.0223) 0.7514 (0.0420) 0.7733 (0.0257)

Citation

If you use this code for your research, please cite our papers.

@article{tu2020ugc,
  title={UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content},
  author={Tu, Zhengzhong and Wang, Yilin and Birkbeck, Neil and Adsumilli, Balu and Bovik, Alan C},
  journal={arXiv preprint arXiv:2005.14354},
  year={2020}
}

Contact

Zhengzhong Tu, zhengzhong.tu@utexas.edu