词表示论文资源

论文题目 关键词+概述 资源路径 说明(创新点)
Exploiting Similarities among Languages for Machine Translation 词向量,双语翻译baseline 1. 使用简单线性矩阵乘法学习语言A到语言B的映射 2. 构造评测集以及构造对照组的方法。如使用编辑距离,Word Co-occurrence构造的对照组
Word Translation Without Parallel Data 多语言的Embedding,对抗学习 代码地址 用对抗学习语言A到语言B的映射
Transfer Learning for Deep Sentiment Analysis 带情感信息的Embedding,迁移学习 误差函数的设计,加了正则,该正则使得学到网络对已知情感标签的词效果好;可借鉴评测方式
Normalized Word Embedding and Orthogonal Transform for Bilingual Word Translation Normalized Word Embedding以及Orthogonal Transform可提高Bilingual分类性能 提高模型训练效率以及稳定性的方法(normalize+正则),容易工程实现
Training Neural Word Embeddings For Transfer Learning And Translation 迁移学习的Embedding
Wiktionary-Based Word Embeddings wiki字典,多语言全局embedding 基于词与词之间的关系(使用加权内积)建模
Adversarial Network Embedding 对抗网络Embedding
Interpretable Adversarial Perturbation in Input Embedding Space for Text 对抗扰动生成方式,此对抗样本 对抗扰动生成方式增加限制,另其仅在有实际意义的word的方向变动,而非随机任意方向变动(后续或者可以加入更强限制,比如lm模型)
Enriching Word Vectors with Subword Information char n-gram,形态学词向量 使用char级别的 n-gram 特征建模,得到表征词形态的词向量
Linguistic Regularities in Sparse and Explicit Word Representations nothing special
Advances in Pre-Training Distributed Word Representations 词向量训练优化手段 词频为Zipf分布,需要提高高频词的discard probability;类似attention的加权context embedding;可以用mutual information criterion从数量爆炸的n-gram中选择少部分信息量大的
Learning to Compose Words into Sentences with Reinforcement Learning tree-structured representations,增强学习
Recent Trends in Deep Learning Based Natural Language Processing 多个nlp任务 state of art 方法 多个nlp任务最新进展,参考价值很大
Invariant Variation Problems 经典不变量分析 其他链接 最经典论文,可以参考https://en.wikipedia.org/wiki/Noether%27s_theorem
Lexicon infused phrase embeddings for named entity resolution 词典,Phrase Embeddings 改装skip-gram,除了预测上下文的context外,还预测辞典中与改词关联的context
Improved Word and Symbol Embedding for Part-of-Speech Tagging 词向量的使用技巧 byte-pair encoding
Unsupervised POS Induction with Word Embeddings HMM、多元高斯分布 skip-gram减小window size更利于获取语法信息;假设某个tag对应的词向量符合多元高斯分布
Improving the Accuracy of Pre-trained Word Embeddings for Sentiment Analysis 通过简单concat的方法改进词向量 直接简单concat word2vec、glove、pos2vec、leicon2vec,缺点是需要引入外部有监督数据
Part-Of-Speech Tag Embedding for Modeling Sentences and Documents POS Embedding nothing special
Diagnosing and Enhancing VAE Models ICLR 2019接收论文
使用生成式对抗网络进行远距离监督关系抽取 其他链接 用对抗网络进行样本去噪,generator和discriminator目标相反,generator尽可能预测样本干净度,预测出来的标签取反放入discriminator训练,训练直到discriminator性能下降最大为止(discriminator初始时和generator的目标一样)。
Phrase-Based & Neural Unsupervised Machine Translation 非监督机器翻译
Unsupervised Part-of-Speech Taggingwith Bilingual Graph-Based Projections 非监督 POS Tagging
Distinguishing Antonyms and Synonyms in a Pattern-based Neural Network 有监督训练word pair关系 借助 parse tree 特征有监督训练反义word pair,基本假设是在同一句话里,反义词同时出现的概率大于同义词同时出现的概率
Integrating Distributional Lexical Contrast into Word Embeddings for Antonym–Synonym Distinction 训练能区分同义词的embedding 代码地址 两种方法,方法一是在普通的词向量的目标函数中加上同义词和反义词的正则;方法二是给词向量的各个特征re-weight,能区分反义词的特征加大权重
Evaluating semantic relations in neural word embeddings with biomedical and general domain knowledge bases 评测词向量捕捉到的各种语义或语法关系 代码地址 评测三种词向量在semantic task的效果;词向量捕捉的关系有8种
Refining Word Embeddings for Sentiment Analysis 2018,使用单词极性信息进行有监督refine 取一个词的top k个最近的词向量,然后使用对应的极性分数对词进行重排序,并将这个重排序的作用反馈到原向量
Retrofitting Word Vectors to Semantic Lexicons 2014,使用辞典的语义信息进行词向量的refine 代码地址 代码地址2 代码地址3 和这篇Refining Word Embeddings for Sentiment Analysis基本一样
Refining Pretrained Word Embeddings Using Layer-wise Relevance Propagation 2018 其他地址 让特征相关分数按layer进行后向传播进行refine词向量;
SeVeN: Augmenting Word Embeddings with Unsupervised Relation Vectors 2018 1、基于PMI构造无监督特征,进而得到无监督关系;2、使用AutoEncoder进行去噪。 3、方法思路挺好,但是感觉效果提升不大
Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers 2018
Adversarial Training for Relation Extraction 2017,对抗学习 代码地址 使用对抗样本提高分类器的稳定性
Adversarial Feature Matching for Text Generation 2017,文本生成 在标准的gan loss中加入了 Maximum Mean Discrepancy 项。通过将文本map到某个feature空间,然后再通过RKHS技术进行相似度的度量
From Word to Sense Embeddings: A Survey on Vector Representations of Meaning 2018 写的比较凌乱
Jointly Learning Word Embeddings and Latent Topics 2017,联合训练特定topic的embedding 借鉴LDA的**,给标准的skip-gram模型加上主题因子,用EM算法进行迭代优化
Distilled Wasserstein Learning for Word Embedding and Topic Modeling 2018
Multi-Task Label Embedding for Text Classification 2018 多任务学习,label embedding
Factors Influencing the Surprising Instability of Word Embeddings 2018
The Interplay of Semantics and Morphology in Word Embedding 2017 代码地址1 代码地址2 词的相似性分为语义相似性和词态相似性;若想增加semantic similarity,可以使用lemma,但会损害 morphology similarity
Joint Embedding of Words and Labels for Text Classification 2018 有监督 代码地址 将label嵌入到词向量空间,通过label和词的相似度矩阵构建attention权值
Domain Separation Networks 2016
RAND-WALK: A Latent Variable Model Approach to Word Embeddings 2016 代码地址
Linear Algebraic Structure of Word Senses, with Applications to Polysemy 2016 代码地址
Querying Word Embeddings for Similarity and Relatedness 2018
A Rank-Based Similarity Metric for Word Embeddings 2018
Improving Word Embeddings with Convolutional Feature Learning and Subword Information 2017
Computing Text Similarity using Tree Edit Distance 2015
Normalisation of Historical Text Using Context-Sensitive Weighted Levenshtein Distance and Compound Splitting 2013
Explicit Retrofitting of Distributional Word Vectors 2018 使用nn拟合一个新的度量空间映射,使得在新的度量空间里满足同义反义词距离条件,且保持愿空间的拓扑结构;还可借鉴一种数据增强方法
Unsupervised Learning of Style-sensitive Word Vectors 2018,可捕捉 Stylistic Similarity版的CBOW 为捕捉 semantic and syntactic similarities,使用context预测target;为了捕捉Stylistic Similarity,使用非context预测target
Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization 2018,对抗学习,词向量微调 代码地址 它先使用外部辞典进行词向量refine,得到一部分词的refined词向量;利用前一步的结果作为训练集,使用gan进行原始词向量到refine词向量映射的学习
Using pseudo-senses for improving the extraction of synonyms from word embeddings 2018 acl 创新点在于将一句话拆成context-target的方式,在原有方式基础上,增加一个target在同一句话整体的context描述方式。refine词向量的方式有paragram和Retrofitting两种,它这里使用paragram
Auto-Encoding Dictionary Definitions into Consistent Word Embeddings 2018 emnlp 仅仅使用辞典定义来训练词向量,可以更好捕获词的similarity;refine词向量时也可以考虑将辞典定义这种关系考虑进去
Gromov-Wasserstein Alignment of Word Embedding Spaces 2018 emnlp
Word Relation Autoencoder for Unseen Hypernym Extraction Using Word Embeddings 2018 emnlp 为了避免对训练样本过拟合(即在训练集出现对pair效果好),从对(w1,w2)建模转为 (w1,w2-w1)建模,并使用AutoEncoder
Learning Gender-Neutral Word Embeddings 2018 emnlp
Specialising Word Vectors for Lexical Entailment 2018 naacl 使用外部关系词进行映射训练
DeepAlignment: Unsupervised Ontology Matching with Refined Word Vectors 2018 naacl
Enhanced Word Representations for Bridging Anaphora Resolution 2018 naacl
Relation Induction in Word Embeddings Revisited 2018 coling
Encoding Sentiment Information into Word Vectors for Sentiment Analysis 2018 coling
Word Sense Disambiguation Based on Word Similarity Calculation Using Word Vector Representation from a Knowledge-based Graph 2018 coling
Learning Hierarchical Similarity Metrics 2012
Poincaré Embeddings for Learning Hierarchical Representations 2017
PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction 2018, 异构网络结构 embedding 对于异构的关系,先将原始向量进行与relation相关的特定的映射;双向(一个edge的两个node)负采样
Scalable Graph Embedding for Asymmetric Proximity 2017, 非对称结构的图embedding
Hierarchical Embeddings for Hypernymy Detection and Directionality 2017 acl
Imposing Hard Constraints on Deep Networks: Promises and Limitations 2017
Large-Scale Embedding Learning in Heterogeneous Event Data 2018 aaai
Relation Structure-Aware Heterogeneous Information Network Embedding 2019 aaai 将所有异构关系简化从属关系和交互关系;从属关系的距离直接使用欧里几得距离(相当于在同一类别);交互关系距离在原始L1距离中加入表征relation的向量Yr(
Unseen Word Representation by Aligning Heterogeneous Lexical Semantic Spaces aaai 2019 先使用外部辞典图进行random walk,生成人造句子,进行词向量训练得到v1;再学习v1到普通词向量v2的映射,目标函数是最大化CCA(Canonical Correlation Analysis)

文本分类论文

论文题目 关键词+概述 资源路径 说明(创新点)

几种NLP任务state of the art水平

任务名称 数据集+描述 目前别人最优值 描述及链接 现状值
Word Similarity RG-65 spearman cor 0.920 Pilehvar and Navigli (2015) Knowledge-based (Wiktionary) https://github.com/vecto-ai/word-benchmarks 0.8177
Word Similarity WordSimilarity-353 spearman cor 0.828 https://github.com/vecto-ai/word-benchmarks ConceptNet Numberbatch Hybrid Speer et al. (2017) 0.6278
Word Similarity SimLex-999 spearman cor 0.642 https://github.com/vecto-ai/word-benchmarks SVR4 combine Banjade et al. (2015)[5] 0.4960
Syntactic Relations Google Analogy中的morphological relations 69.3 https://github.com/vecto-ai/word-benchmarks http://llcao.net/cu-deeplearning15/presentation/nn-pres.pdf 67.0
Synonym Selection TOEFL Synonym Questions 100.00% Bullinaria and Levy (2012) 95%
Sentiment Analysis IMDb Accuracy 95.4 https://arxiv.org/abs/1801.06146 https://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf https://github.com/akzaidi/fine-lm
Named entity recognition CoNLL 2003 (English) f1值 93.09 https://drive.google.com/file/d/17yVpFA7MmXaQFTe-HDpZuqw9fJlmzg56/view https://github.com/zalandoresearch/flair 91.9

两个可以看效果的链接地址

论文工具链接地址

几个数据集源

数据集 关键词+概述
https://github.com/airshipcloud/dictionary-seed/tree/master/wordnet/Thesaurus

2018 NIPS Best Paper

论文题目 关键词+概述 下载路径 说明(创新点)
Non-delusional Q-learning and Value-iteration http://120.52.51.17/www.cs.toronto.edu/~cebly/Papers/nondelusionalQ_nips18.pdf
Optimal Algorithms for Non-Smooth Distributed Optimization in Networks https://papers.nips.cc/paper/7539-optimal-algorithms-for-non-smooth-distributed-optimization-in-networks.pdf
Nearly Tight Sample Complexity Bounds for Learning Mixtures of Gaussians via Sample Compression Schemes https://papers.nips.cc/paper/7601-nearly-tight-sample-complexity-bounds-for-learning-mixtures-of-gaussians-via-sample-compression-schemes.pdf
Neural Ordinary Differential Equations https://arxiv.org/pdf/1806.07366

其他资源

论文题目 关键词+概述 资源路径 说明(创新点)
Adversarial Learning for Neural Dialogue Generation 2017
Long Text Generation via Adversarial Training with Leaked Information 2018
Adversarial Feature Matching for Text Generation 2017
Distance metric learning, with application to clustering with side-information 2003 metric learning 聚类
A Survey on Metric Learning for Feature Vectors and Structured Data 2014 metric learning 调研