This work is accepted in BMVC2020 as Best Paper Award. It introduces a plugin module in neural network to improve both model accuracy and consistency.
[Project page] | [arXiv] | [Slide] | [Video] | [视频]
- Image Classification
- Instance Segmentation
- Semantic Segmentation
torch==1.1.0
torchvision==0.2.0
- Download the ImageNet dataset and move validation images to labeled subfolders
- To do this, you can use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh
anti-aliasing
└── data
├── output
├── ILSVRC2012
└── master
└── Adaptive-anti-Aliasing
└── ...
Model Name | Top-1 Acc | Consistency | |
---|---|---|---|
resnet101_k3_pasa_group8_softmax | weight | 79.0 | 91.8 |
resnet101_k5_pasa_group8_softmax | weight | 78.6 | 92.2 |
python main.py --data ../../data/ILSVRC2012 -f 5 -e -b 32 -a resnet101_pasa_group_softmax --group 8 --weights /pth/to/model
python main.py --data ../../data/ILSVRC2012 -f 3 -b 128 -ba 2 -a resnet101_pasa_group_softmax --group 8 --out-dir /pth/to/output/dir
Please directly put "Adaptive-anti-Aliasing/models_lpf/layers/pasa.py" this module before downsampling layers of the backbone except the first convolution layer. We adopt implemantation directly from:
Instance Segmentation: MaskRcnn
Semantic Segmentation: Deeplab V3+ and TDNet
@inproceedings{zou2020delving,
title={Delving Deeper into Anti-aliasing in ConvNets},
author={Xueyan Zou and Fanyi Xiao and Zhiding Yu and Yong Jae Lee},
booktitle={BMVC},
year={2020}
}
We borrow most of the code from Richard Zhang's Repo (https://github.com/adobe/antialiased-cnns) Thank you : )