/STAM-pytorch

Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

Primary LanguagePythonMIT LicenseMIT

STAM - Pytorch

Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in video classification. This corroborates the finding of TimeSformer. Attention is all we need.

Install

$ pip install stam-pytorch

Usage

import torch
from stam_pytorch import STAM

model = STAM(
    dim = 512,
    image_size = 256,     # size of image
    patch_size = 32,      # patch size
    num_frames = 5,       # number of image frames, selected out of video
    space_depth = 12,     # depth of vision transformer
    space_heads = 8,      # heads of vision transformer
    space_mlp_dim = 2048, # feedforward hidden dimension of vision transformer
    time_depth = 6,       # depth of time transformer (in paper, it was shallower, 6)
    time_heads = 8,       # heads of time transformer
    time_mlp_dim = 2048,  # feedforward hidden dimension of time transformer
    num_classes = 100,    # number of output classes
    space_dim_head = 64,  # space transformer head dimension
    time_dim_head = 64,   # time transformer head dimension
    dropout = 0.,         # dropout
    emb_dropout = 0.      # embedding dropout
)

frames = torch.randn(2, 5, 3, 256, 256) # (batch x frames x channels x height x width)
pred = model(frames) # (2, 100)

Citations

@misc{sharir2021image,
    title   = {An Image is Worth 16x16 Words, What is a Video Worth?}, 
    author  = {Gilad Sharir and Asaf Noy and Lihi Zelnik-Manor},
    year    = {2021},
    eprint  = {2103.13915},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}