Image for Deep Learning with built-in Jupyter/Tensorboard and latest DL Frameworks
- Ubuntu 18.04
- CUDA Toolkit 10.0
- CuDNN 7.x
- NCCL 2
- Docker
- NVIDIA-Docker 2
- Python 3.7
- Tensorflow 1.14.0
- PyTorch 1.1.0
- Keras
- Tensorboard
- Jupyter
- ...other useful packages
-
Clone this repository
git clone https://github.com/lucidyan/ml-docker
-
Install CUDA-10
- Old instruction: https://gist.github.com/bogdan-kulynych/f64eb148eeef9696c70d485a76e42c3a - New instruction: https://gist.github.com/Mahedi-61/2a2f1579d4271717d421065168ce6a73 - Best guide: https://www.tensorflow.org/install/gpu
-
Install NVIDIA-Docker
cd ml-docker; sudo chmod a+x nvidia_docker_install.sh; sudo ./nvidia_docker_install.sh
-
Reboot system after Docker installation (necessary for running Docker without sudo rights)
-
Build the image
docker build --build-arg USER_ID=$(id -u) --build-arg GROUP_ID=$(id -g) --tag "lucidyan/ml-docker:20.02.1" ." .
-
Run it with command
python3 run_docker_jupyter.py -pj 8888 -pt 6006
where8888
and6006
your local unoccupied ports for Jupyter and Tensorboard respectively