Exact Lifted Sampler for Two-Variable Logic

This tool is for sampling instances or combinatorical structures from the two-variable fragment of first-order logic.

Input format

  1. First-order sentence with at most two logic variables, see fol_grammar.py for details, e.g.,
  • \forall X: (\forall Y: (R(X, Y) <-> Z(X, Y)))
  • \forall X: (\exists Y: (R(X, Y)))
  • \exists X: (F(X) -> \forall Y: (R(X, Y)))
  • ..., even more complex sentence...
  1. Domain:
  • domain=3 or
  • domain={p1, p2, p3}
  1. Weighting (optional): positve_weight negative_weight predicate
  2. Cardinality constraint (optional):
  • |P| = k
  • |P| > k
  • |P| >= k
  • |P| < k
  • |P| <= k
  • ...

Example input file

2 colored graphs:

\forall X: (\forall Y: ((E(X,Y) -> E(Y,X)) &
                        (R(X) | B(X)) &
                        (~R(X) | ~B(X)) &
                        (E(X,Y) -> ~(R(X) & R(Y)) & ~(B(X) & B(Y)))))

V = 10

2 regular graphs:

\forall X: (~E(X,X)) &
\forall X: (\forall Y: ((E(X,Y) -> E(Y,X)) &
                        (E(X,Y) <-> (F1(X,Y) | F2(X,Y))) &
                        (~F1(X, Y) | ~F2(X,Y)))) &
\forall X: (\exists Y: (F1(X,Y))) & 
\forall X: (\exists Y: (F2(X,Y)))

V = 6
|E| = 12

Note: You can also directly input the SC2 sentence

2 regular graphs (sc2):

\forall X: (~E(X,X)) &
\forall X: (\forall Y: (E(X,Y) -> E(Y,X))) &
\forall X: (\exists_{=2} Y: (E(X,Y)))

V = 6

Sampling possible worlds from friends-smokes MLN:

\forall X: (~fr(X,X)) &
\forall X: (\forall Y: (fr(X,Y) -> fr(Y,X))) &
\forall X: (\forall Y: (aux(X,Y) <-> (fr(X,Y) & sm(X) -> sm(Y)))) &
\forall X: (\exists Y: (fr(X,Y)))

person = 10
2.7 1 aux

Note: You can also directly input the MLN in the form defined in mln_grammar.py

~friends(X,X).
friends(X,Y) -> friends(Y,X).
2.7 friends(X,Y) & smokes(X) -> smokes(Y)
\forall X: (\existes Y: (fr(X,Y))).
# or 
\exists Y: (fr(X,Y)).

person = 10

More examples are in models

Installation

Install the package:

$ pip install -e .

How to use

Run the following command:

$ python sampling_fo2/sampler.py -i [input] -k [N] -s

Find more arguments:

$ python sampling_fo2/sampler.py -h

Bonus

This repo also contains the code for WFOMC (the counting counterpart problem of first-order model sampling). Just run:

$ python sampling_fo2/wfomc.py -i [input]

References

@article{DBLP:journals/ai/WangPWK24,
  author       = {Yuanhong Wang and
                  Juhua Pu and
                  Yuyi Wang and
                  Ondrej Kuzelka},
  title        = {Lifted algorithms for symmetric weighted first-order model sampling},
  journal      = {Artif. Intell.},
  volume       = {331},
  pages        = {104114},
  year         = {2024},
  url          = {https://doi.org/10.1016/j.artint.2024.104114},
  doi          = {10.1016/J.ARTINT.2024.104114},
  timestamp    = {Fri, 31 May 2024 21:06:28 +0200},
  biburl       = {https://dblp.org/rec/journals/ai/WangPWK24.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DBLP:conf/lics/WangP0K23,
  author       = {Yuanhong Wang and
                  Juhua Pu and
                  Yuyi Wang and
                  Ondrej Kuzelka},
  title        = {On Exact Sampling in the Two-Variable Fragment of First-Order Logic},
  booktitle    = {{LICS}},
  pages        = {1--13},
  year         = {2023},
  url          = {https://doi.org/10.1109/LICS56636.2023.10175742},
  doi          = {10.1109/LICS56636.2023.10175742},
  timestamp    = {Thu, 20 Jul 2023 11:32:59 +0200},
  biburl       = {https://dblp.org/rec/conf/lics/WangP0K23.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

If you use the WFOMC code, please cite

@inproceedings{DBLP:conf/uai/BremenK21,
  author       = {Timothy van Bremen and
                  Ondrej Kuzelka},
  editor       = {Cassio P. de Campos and
                  Marloes H. Maathuis and
                  Erik Quaeghebeur},
  title        = {Faster lifting for two-variable logic using cell graphs},
  booktitle    = {Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial
                  Intelligence, {UAI} 2021, Virtual Event, 27-30 July 2021},
  series       = {Proceedings of Machine Learning Research},
  volume       = {161},
  pages        = {1393--1402},
  publisher    = {{AUAI} Press},
  year         = {2021},
  url          = {https://proceedings.mlr.press/v161/bremen21a.html},
  timestamp    = {Fri, 17 Dec 2021 17:06:27 +0100},
  biburl       = {https://dblp.org/rec/conf/uai/BremenK21.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}