/Dehamer

去雾算法

Primary LanguagePythonMIT LicenseMIT

Image Dehazing Transformer with Transmission-Aware 3D Position Embedding (CVPR2022)

This repository contains the official implementation of the following paper:

Image Dehazing Transformer with Transmission-Aware 3D Position Embedding
Chun-Le Guo, Qixin Yan, Saeed Anwar, Runmin Cong, Wenqi Ren, Chongyi Li*
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022
Paper Link: [official link]

Overview

overall_structure Overview structure of our method. Our method consists of five key modules: a transmission-aware 3D position embedding module, a Transformer module, a CNN encoder module, a feature modulation module, and a CNN decoder module.

Environment

  1. Clone Repo

    git clone <code_link>
    cd Dehamer-main/
  2. Create Conda Environment and Install Dependencies

    conda env create -f environment.yaml
    conda activate dehamer

Prepare pretrained models and quick test

Before performing the following steps, please download our pretrained model first.

Download Links: [Google Drive] [Baidu Disk (password: 1tap)]

Then, unzip the file and place the models to ckpts/<dataset_name> directory, separately.

The directory structure will be arranged as:

ckpts
   |- dense
      |- PSNR1662_SSIM05602.pt  
   |- NH
      |- PSNR2066_SSIM06844.pt
   |- indoor
      |- PSNR3663_ssim09881.pt
   |- outdoor
      |- PSNR3518_SSIM09860.pt

We provide some classic test images in the classic_test_image directory.

Run the following command to process them:

CUDA_VISIBLE_DEVICES=X python src/test_PSNR.py --dataset-name our_test  

The dehazed images will be saved in the results/ directory.

You can also run the following command to process your own images:

CUDA_VISIBLE_DEVICES=X python src/test_PSNR.py \
  --dataset-name our_test -t path/to/your/test/folder   

Prepare dataset for training and evaluation

Dataset OTS-Train ITS-Train Dense-Haze NH-HAZE SOTS-Test
Details about 45G about 4.5G about 250M about 315M about 415M
Google drive Google drive Google drive Google drive Google drive Google drive
Baidu Cloud Not available Baidu Cloud Baidu Cloud Baidu Cloud Baidu Cloud

The train and valid split files are provided in data/<dataset_name>.

The data directory structure will be arranged as: (Note: please check it carefully)

data
   |- classic_test_image
      |- input
         |- canyon.png
         |- canyon1.png
      |- val_list.txt
   |-Dense-Haze
      |- train_dense
         |- haze
            |- 01_hazy.png 
            |- 02_hazy.png
         |- clear_images
            |- 01_GT.png 
            |- 02_GT.png
         |- trainlist.txt
      |- valid_dense
         |- input 
            |- 51_hazy.png 
            |- 52_hazy.png
         |- gt
            |- 51_GT.png 
            |- 52_GT.png
         |- val_list.txt
   |-NH-Haze
      |- train_NH
         |- haze
            |- 01_hazy.png 
            |- 02_hazy.png
         |- clear_images
            |- 01_GT.png 
            |- 02_GT.png
         |- trainlist.txt
      |- valid_NH
         |- input 
            |- 51_hazy.png 
            |- 52_hazy.png
         |- gt
            |- 51_GT.png 
            |- 52_GT.png
         |- val_list.txt
   |-ITS
      |- train_indoor
         |- haze
            |- 1_1_0.90179.png 
            |- 2_1_0.99082.png
         |- clear_images
            |- 1.png 
            |- 2.png
         |- trainlist.txt
      |- valid_indoor
         |- input
            |- 1400_1.png 
            |- 1401_1.png
         |- gt
            |- 1400.png 
            |- 1401.png
         |- val_list.txt
   |-OTS   
      |- train_outdoor
         |- haze
            |- 0005_0.8_0.04.jpg 
            |- 0008_0.8_0.04.jpg
         |- clear_images
            |- 0005.jpg 
            |- 0008.jpg
         |- trainlist.txt
      |- valid_outdoor
         |- input
            |- 0001_0.8_0.2.jpg 
            |- 0002_0.8_0.08.jpg
         |- gt
            |- 0001.png 
            |- 0002.png
         |- val_list.txt

Training

See python3 src/train.py --h for list of optional arguments, or train.sh for examples.

An example of NH-HAZE dataset.

CUDA_VISIBLE_DEVICES=0,1 python src/train.py \
  --dataset-name NH \
  --train-dir ./data/train_NH/ \
  --valid-dir ./data/valid_NH/ \
  --ckpt-save-path ../ckpts \
  --ckpt-overwrite \
  --nb-epochs 5000 \
  --batch-size 2\
  --train-size 800 1200  \
  --valid-size 800 1200 \
  --loss l1 \
  --plot-stats \
  --cuda   

Testing

See python3 test_PSNR.py --h for list of optional arguments, or test.sh for an example.

An example of NH-HAZE dataset.

CUDA_VISIBLE_DEVICES=1 python src/test_PSNR.py \
  --dataset-name NH   

Results

Quantitative comparisons on synthetic dehazing datasets: SOTS-Indoor and SOTS-Outdoor.

quantitative_results

Quantitative comparisons on real dehazing datasets: Dense-Haze and NH-HAZE.

quantitative_results The results of our dehamer on benchmarks can also be download from [Google drive] and [Baidu Disk (password: 13e2)].

Citation

If you find our repo useful for your research, please consider citing our paper:

@inproceedings{guo2022dehamer,
  author = {Chun-Le Guo, Qixin Yan, Saeed Anwar, Runmin Cong, Wenqi Ren, Chongyi Li},
  title = {Image Dehazing Transformer with Transmission-Aware 3D Position Embedding},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Contact

If you have any question, please feel free to contact us via guochunle@nankai.edu.com or lichongyi25@gmail.com.

Acknowledgments

This code is based on Swin-Transformer , Noise2noise, and GridDehazeNet.