ODPrediction

Illustration of OD construction

Problem Definition. Given the regional urban characteristics of the city ${\lbrace} X_r | r\in\mathcal{R} \rbrace$ and observed OD flows $\lbrace f_{ij}|\langle r_i, r_j\rangle\in\mathcal{X} \rbrace$ between part of OD pairs $\mathcal{X}$ , construct a model to predict the remaining unknown OD flows $\lbrace f_{ij}|\langle r_i,r_j\rangle\notin\mathcal{X}\rbrace$.

Requirements

  • python 3.8
  • tqdm == 4.64.0
  • pytorch == 2.0.0
  • dgl == 0.8
  • pandas == 1.4.4
  • geopandas == 0.12.2
  • matplotlib == 3.5.3
  • mlflow == 2.3.2
  • networkx == 2.8.6
  • pyproj == 3.4.1
  • scikit-learn == 1.1.2
  • scipy == 1.9.1
  • tensorboard == 2.12.3

Systematic Summary

Models Techniques Required Features Feature Type
gravity Physical Model Population, distance Numerical
IOM Social Model Opportunities Numerical
radiation model Physical Model Population Numerical
SVR Kernal-based Model Socioeconomics
distance
Numerical
GBRT Tree-based Model Socioeconomics Numerical
categorical
Random Forest Tree-based Model Socioeconomics Numerical
ANN Neural Network Socioeconomics Numerical
SI-GCN Deep Learning Socioeconomics Numerical
categorical
GMEL Deep Learning Socioeconomics Numerical
GCN-MLP Deep Learning POIs Numerical
spatialGAT Deep Learning Population
road density
POIs
railway users
Numerical
ConvGCN-RF Deep Learning Population
landuse
Numerical
categorical
SIRI Deep Learning
Causal Inference
Socioeconomics
POIs
Numerical

Performance Comparison

Models RMSE MAE CPC
gravity 6.944 2.179 0.602
random forest 6.273 2.436 0.638
GBRT 5.454 1.974 0.707
XGB 5.726 1.998 0.689
ANN 5.503 2.001 0.708
GNN 5.026 1.773 0.722
GMEL 4.887 1.747 0.741

The complete performance table is coming soon.