Problem Definition. Given the regional urban characteristics of the city
- python 3.8
- tqdm == 4.64.0
- pytorch == 2.0.0
- dgl == 0.8
- pandas == 1.4.4
- geopandas == 0.12.2
- matplotlib == 3.5.3
- mlflow == 2.3.2
- networkx == 2.8.6
- pyproj == 3.4.1
- scikit-learn == 1.1.2
- scipy == 1.9.1
- tensorboard == 2.12.3
Models | Techniques | Required Features | Feature Type |
---|---|---|---|
gravity | Physical Model | Population, distance | Numerical |
IOM | Social Model | Opportunities | Numerical |
radiation model | Physical Model | Population | Numerical |
SVR | Kernal-based Model | Socioeconomics distance |
Numerical |
GBRT | Tree-based Model | Socioeconomics | Numerical categorical |
Random Forest | Tree-based Model | Socioeconomics | Numerical |
ANN | Neural Network | Socioeconomics | Numerical |
SI-GCN | Deep Learning | Socioeconomics | Numerical categorical |
GMEL | Deep Learning | Socioeconomics | Numerical |
GCN-MLP | Deep Learning | POIs | Numerical |
spatialGAT | Deep Learning | Population road density POIs railway users |
Numerical |
ConvGCN-RF | Deep Learning | Population landuse |
Numerical categorical |
SIRI | Deep Learning Causal Inference |
Socioeconomics POIs |
Numerical |
Models | RMSE | MAE | CPC |
---|---|---|---|
gravity | 6.944 | 2.179 | 0.602 |
random forest | 6.273 | 2.436 | 0.638 |
GBRT | 5.454 | 1.974 | 0.707 |
XGB | 5.726 | 1.998 | 0.689 |
ANN | 5.503 | 2.001 | 0.708 |
GNN | 5.026 | 1.773 | 0.722 |
GMEL | 4.887 | 1.747 | 0.741 |