/ensemble-average-q

Create ensemble-average partial charge input files for NWChem compatible with the GLYCAM force field.

Primary LanguagePython

ensemble-average-q

Create NWChem input files for the calculation of ensemble-average RESP atomic partial charges according to GLYCAMs ensemble-averaging procedure.

NOTE!

The number of NWChem input files is determined by the number of snapshots in the trajectory. NWChem options should be changed in the python script according to your molecule of interest.

Required python packages:
Numpy
MDAnalysis

The following are the results from a 200 ns GROMACS simulation of alpha-L-GulA-OMe in the 1C4 ring conformation and beta-D-manA-OMe in the 4C1 ring conformation, using ACPYPE to make GLYCAM compatible with GROMACS. 200 equally spaced snapshots were extracted from the trajectory and their geometry optimized the HF/6-31G* level of theory using NWChem. All dihedral angles were frozen to their MD snapshot values.
Atom type av. q gulA std. q gulA av. q manA std. q manA Comment
H1 0.000 0.000 0.000 0.000
CH3 0.264 0.000 0.264 0.000
H2 0.000 0.000 0.000 0.000
H3 0.000 0.000 0.000 0.000
O -0.458 0.000 -0.458 0.000
C1 0.333 0.049 0.251 0.044
H1 0.000 0.000 0.000 0.000
O5 -0.499 0.043 -0.369 0.042
C5 0.191 0.069 0.017 0.076
H5 0.000 0.000 0.000 0.000
C6 0.906 0.053 0.928 0.051
O6B -0.847 0.018 -0.842 0.022
O6A -0.847 0.018 -0.842 0.022
C4 0.284 0.094 0.479 0.110
H4 0.000 0.000 0.000 0.000
O4 -0.786 0.049 -0.766 0.039 terminal unit
H4O 0.430 0.044 0.412 0.022
C3 0.298 0.083 0.217 0.100
H3 0.000 0.000 0.000 0.000
O3 -0.747 0.040 -0.711 0.035
H3O 0.403 0.025 0.406 0.019
C2 0.445 0.097 0.264 0.070
H2 0.000 0.000 0.000 0.000
O2 -0.783 0.041 -0.654 0.032
H2O 0.413 0.022 0.404 0.017
O4 -0.550 - -0.548 - = O4 + H4O + O + CH3
H1O 0.445 - 0.445 - glycam default for H1O
O1 -0.639 - -0.639 - glycam default for O1

Assuming you have run a GROMACS simulation of your molecule, you can run

gmx trjconv -f md.xtc -s md.tpr -b 980 -dt 1000 -center -pbc mol

with the desired spacing of intervals and select your interesting molecule for cenetering and output. The outfile (trajout.xtc) and a topology file of your molecule, e.g. an .itp file is used as input for ensemble-average-q.py to create the NWChem files with all dihedral angles frozen to the values in the trajectory.