This is the implementation of ASDIP: [Adaptive Sampling-based Dynamic Graph Learning for Information Diffusion Prediction].
- python == 3.9.18
- pytorch == 2.0.1
- numba == 0.55.1
- numpy == 1.21.6
- pandas == 2.0.3
- scikit-learn == 1.3.0
- dgl == 1.1.2
- tqdm
- wandb
- Download the preprocessed dataset from Baidu Yun (extract code nihb)
- create a directory
./data/dynamic
and put the downloaded dataset into the directory.
Create the directories to store the running results
mkdir log results saved_models
Running command
#Memetracker
python train_ASDIP.py --prefix std --dataset douban --gpu 0 --causal before after none
#Douban
python train_ASDIP.py --prefix std --dataset memetracker --gpu 0 --causal before after none
#Weibo
python train_ASDIP.py --prefix std --dataset weibo --gpu 0 --causal before after none