/CTCP

code and data for Continuous-Time Graph Learning for Cascade Popularity Prediction, IJCAI 2023

Primary LanguagePython

Continuous-Time Graph Learning for Cascade Popularity Prediction

This is the implementation of CTCP: [Continuous-Time Graph Learning for Cascade Popularity Prediction, IJCAI 2023].

Requirements

  • python == 3.7.0
  • pytorch == 1.9.1
  • dgl == 0.8.2
  • scikit-learn == 1.0
  • numpy == 1.21.5
  • pandas == 1.1.5
  • tqdm == 4.62.3

Dataset

  • Download the preprocessed dataset from Baidu Yun (extract code myu6)
  • create a directory ./data and put the downloaded dataset into the directory.

Run

Create the directories to store the running results

mkdir log results saved_models

Running command

#Twitter
python main.py --dataset twitter  --prefix std --gpu 0 --epoch 150 --embedding_module aggregate --use_dynamic --use_temporal --use_structural --use_static --dropout 0.6 --predictor merge --lambda 0.1
#APS
python main.py --dataset aps  --prefix std --gpu 0 --epoch 150 --embedding_module aggregate --use_dynamic --use_temporal --use_structural --use_static --dropout 0.6 --predictor merge --lambda 0.1
#Weibo
python main.py --dataset weibo  --prefix std --gpu 0 --epoch 150 --embedding_module aggregate --use_dynamic --use_temporal --use_structural --use_static --dropout 0.6 --predictor merge --lambda 0.1

After running, the log file, results, and trained model are saved under the directories of log, saved_results, and saved_models respectively.