下载本项目。并自行把各种预训练的.v2.caffemodel下载下来。参考原版py-faster-rcnn的说明。
比如放在/home/chris/data/traffic_sign
目录:
├── Annotations
├── classes.txt
├── ImageSets
├── JPEGImages
└── 数据集说明.txt
其中classex.txt的每行是一个待检测的目标类别,不需要引号
Annotations, ImageSets, JPEGImages这3个目录,和VOC 2007数据集格式一样即可
需要确保ImageSets/Main/xxx.txt
的存在: xxx通常是train, val, trainval, test
等。这个xxx的取值要和后续训练脚本中指定的TRAIN_IMDB
和TEST_IMDB
取值的最后一段保持一致。
- 数据集所在父目录
experiments/cfg/faster_rcnn_end2end.yml
,修改DATA_DIR
为你的数据集目录的父目录。
- VOCdevkit目录
默认假定了VOCdevkit放在了/home/chris/data/VOCdevkit,可以在experiments/cfg/faster_rcnn_end2end.sh
添加VOCdevkit: /path/to/your/VOCdevkit
或者lib/fast_rcnn/config.py
中修改__C.DEVKIT_DIR
的值
- 训练脚本增加数据集
在py-faster-rcnn/experiments/scripts/faster_rcnn_end2end.sh
等脚本中,添加数据集的case选项,如:
case $DATASET in
traffic_sign)
TRAIN_IMDB="你的数据集名_train"
TEST_IMDB="你的数据集名_val"
PT_DIR="你的数据集名"
ITERS=1000
;;
train
和val
是用来取数据集子集的,对应着从你的数据集名/ImageSets/Main/{train.txt,val.txt}
中取出。
根据上一步设定的PT_DIR
准备。详细路径如:
py-faster-rcnn/models/${PT_DIR}/${NET}/faster_rcnn_end2end/{solver.prototxt,train.prototxt,test.prototxt}
其中NET
是上一步的脚本的输入参数所设定,比如VGG16
很直接的一个做法是,从现有网络结构拷贝:
cp -R models/pascal_voc models/traffic_sign
注意,一定记得修改solver.prototxt中的train.prototxt的路径!
vim models/traffic_sign/VGG16/faster_rcnn_end2end/solver.prototxt
#修改第一行的路径,把默认的pascal_voc换成你的路径,例如traffic_sign
如有必要,修改网络类别数
在train.prototxt中:
input-data层的`num_classes`,为类别数+1 (1个背景类,下同)
roi-data层的`num_classes`,为类别数+1
cls_score层的`num_output`,为类别数+1
bbox_pred层的`num_output`,为(类别数+1)*4, 4表示一个bbox的4个坐标值
在test.prototxt中
如有必要,修改anchor数
rpn_cls_prob_reshape层的第二个`dim`: 2*anchor数量(2表示bg/fg,背景和前景做二分类,下同)
rpn_cls_score层的`num_output`: 2*anchor数量
同时,python代码中也要修改这个anchor数。具体要自己看下。
通常训练会耗时很久。强烈建议开启tmux执行任务,这样可以_断开_“执行训练所使用的那个shell”,等过一段时间后再连接上并查看它。
sudo apt install tmux
tmux new -s py-faster-rcnn-train #建立tmux新会话,并指定其名字。
... #开启各种耗时的命令、任务脚本
# ctrl+b是tmux各种组合键的前缀
# ctrl+b d 关闭当前shell
tmux a -t py-faster-rcnn-train #重新连接指定的tmux会话
tmux ls #查看tmux会话列表
关键训练脚本:
./experiments/scripts/faster_rcnn_end2end.sh 0 VGG_CNN_M_1024 traffic_sign --ext .png
最后的两个参数用来指定训练图片后缀。不指定这两个参数的话默认是jpg格式
来自此项目,提供了在VOC0712上微调所得的caffemodel.
是分类模型在FasterRCNN目标检测网络上微调所得。其中插入了BN层。
faster-rcnn-resnet-101 百度网盘 OneDrive
faster-rcnn-resnet-101-ohem 百度网盘 OneDrive
未给出finetune得到的caffemodel,只给了prototxt。
见此处
如果你的显存比较小,那么考虑用它的resnet50-1by2模型
https://github.com/andrewliao11/py-faster-rcnn-imagenet
The official Faster R-CNN code (written in MATLAB) is available here. If your goal is to reproduce the results in our NIPS 2015 paper, please use the official code.
This repository contains a Python reimplementation of the MATLAB code. This Python implementation is built on a fork of Fast R-CNN. There are slight differences between the two implementations. In particular, this Python port
- is ~10% slower at test-time, because some operations execute on the CPU in Python layers (e.g., 220ms / image vs. 200ms / image for VGG16)
- gives similar, but not exactly the same, mAP as the MATLAB version
- is not compatible with models trained using the MATLAB code due to the minor implementation differences
- includes approximate joint training that is 1.5x faster than alternating optimization (for VGG16) -- see these slides for more information
By Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun (Microsoft Research)
This Python implementation contains contributions from Sean Bell (Cornell) written during an MSR internship.
Please see the official README.md for more details.
Faster R-CNN was initially described in an arXiv tech report and was subsequently published in NIPS 2015.
Faster R-CNN is released under the MIT License (refer to the LICENSE file for details).
If you find Faster R-CNN useful in your research, please consider citing:
@inproceedings{renNIPS15fasterrcnn,
Author = {Shaoqing Ren and Kaiming He and Ross Girshick and Jian Sun},
Title = {Faster {R-CNN}: Towards Real-Time Object Detection
with Region Proposal Networks},
Booktitle = {Advances in Neural Information Processing Systems ({NIPS})},
Year = {2015}
}
- Requirements: software
- Requirements: hardware
- Basic installation
- Demo
- Beyond the demo: training and testing
- Usage
- Requirements for
Caffe
andpycaffe
(see: Caffe installation instructions)
Note: Caffe must be built with support for Python layers!
# In your Makefile.config, make sure to have this line uncommented
WITH_PYTHON_LAYER := 1
# Unrelatedly, it's also recommended that you use CUDNN
USE_CUDNN := 1
You can download my Makefile.config for reference.
2. Python packages you might not have: cython
, python-opencv
, easydict
3. [Optional] MATLAB is required for official PASCAL VOC evaluation only. The code now includes unofficial Python evaluation code.
- For training smaller networks (ZF, VGG_CNN_M_1024) a good GPU (e.g., Titan, K20, K40, ...) with at least 3G of memory suffices
- For training Fast R-CNN with VGG16, you'll need a K40 (~11G of memory)
- For training the end-to-end version of Faster R-CNN with VGG16, 3G of GPU memory is sufficient (using CUDNN)
- Clone the Faster R-CNN repository
# Make sure to clone with --recursive
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
-
We'll call the directory that you cloned Faster R-CNN into
FRCN_ROOT
Ignore notes 1 and 2 if you followed step 1 above.
Note 1: If you didn't clone Faster R-CNN with the
--recursive
flag, then you'll need to manually clone thecaffe-fast-rcnn
submodule:git submodule update --init --recursive
Note 2: The
caffe-fast-rcnn
submodule needs to be on thefaster-rcnn
branch (or equivalent detached state). This will happen automatically if you followed step 1 instructions. -
Build the Cython modules
cd $FRCN_ROOT/lib make
-
Build Caffe and pycaffe
cd $FRCN_ROOT/caffe-fast-rcnn # Now follow the Caffe installation instructions here: # http://caffe.berkeleyvision.org/installation.html # If you're experienced with Caffe and have all of the requirements installed # and your Makefile.config in place, then simply do: make -j8 && make pycaffe
-
Download pre-computed Faster R-CNN detectors
cd $FRCN_ROOT ./data/scripts/fetch_faster_rcnn_models.sh
This will populate the
$FRCN_ROOT/data
folder withfaster_rcnn_models
. Seedata/README.md
for details. These models were trained on VOC 2007 trainval.
After successfully completing basic installation, you'll be ready to run the demo.
To run the demo
cd $FRCN_ROOT
./tools/demo.py
The demo performs detection using a VGG16 network trained for detection on PASCAL VOC 2007.
-
Download the training, validation, test data and VOCdevkit
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
-
Extract all of these tars into one directory named
VOCdevkit
tar xvf VOCtrainval_06-Nov-2007.tar tar xvf VOCtest_06-Nov-2007.tar tar xvf VOCdevkit_08-Jun-2007.tar
-
It should have this basic structure
$VOCdevkit/ # development kit $VOCdevkit/VOCcode/ # VOC utility code $VOCdevkit/VOC2007 # image sets, annotations, etc. # ... and several other directories ...
-
Create symlinks for the PASCAL VOC dataset
cd $FRCN_ROOT/data ln -s $VOCdevkit VOCdevkit2007
Using symlinks is a good idea because you will likely want to share the same PASCAL dataset installation between multiple projects.
-
[Optional] follow similar steps to get PASCAL VOC 2010 and 2012
-
[Optional] If you want to use COCO, please see some notes under
data/README.md
-
Follow the next sections to download pre-trained ImageNet models
Pre-trained ImageNet models can be downloaded for the three networks described in the paper: ZF and VGG16.
cd $FRCN_ROOT
./data/scripts/fetch_imagenet_models.sh
VGG16 comes from the Caffe Model Zoo, but is provided here for your convenience. ZF was trained at MSRA.
To train and test a Faster R-CNN detector using the alternating optimization algorithm from our NIPS 2015 paper, use experiments/scripts/faster_rcnn_alt_opt.sh
.
Output is written underneath $FRCN_ROOT/output
.
cd $FRCN_ROOT
./experiments/scripts/faster_rcnn_alt_opt.sh [GPU_ID] [NET] [--set ...]
# GPU_ID is the GPU you want to train on
# NET in {ZF, VGG_CNN_M_1024, VGG16} is the network arch to use
# --set ... allows you to specify fast_rcnn.config options, e.g.
# --set EXP_DIR seed_rng1701 RNG_SEED 1701
("alt opt" refers to the alternating optimization training algorithm described in the NIPS paper.)
To train and test a Faster R-CNN detector using the approximate joint training method, use experiments/scripts/faster_rcnn_end2end.sh
.
Output is written underneath $FRCN_ROOT/output
.
cd $FRCN_ROOT
./experiments/scripts/faster_rcnn_end2end.sh [GPU_ID] [NET] [--set ...]
# GPU_ID is the GPU you want to train on
# NET in {ZF, VGG_CNN_M_1024, VGG16} is the network arch to use
# --set ... allows you to specify fast_rcnn.config options, e.g.
# --set EXP_DIR seed_rng1701 RNG_SEED 1701
This method trains the RPN module jointly with the Fast R-CNN network, rather than alternating between training the two. It results in faster (~ 1.5x speedup) training times and similar detection accuracy. See these slides for more details.
Artifacts generated by the scripts in tools
are written in this directory.
Trained Fast R-CNN networks are saved under:
output/<experiment directory>/<dataset name>/
Test outputs are saved under:
output/<experiment directory>/<dataset name>/<network snapshot name>/