Face-Detection-Algorithms

Overview

This project is a comprehensive study and implementation of various face detection algorithms. It is a collaborative effort by a team of students aiming to compare and analyze the performance of different face recognition techniques.

Table of Contents

Algorithms

The project includes implementations and evaluations of the following face detection algorithms:

  • EigenFaces (Hania)
  • FisherFaces (Hania)
  • VGG16 (Marta)
  • Haar Cascade Classifier (Karol)
  • Local Binary Patterns (LBP) (Karol)
  • YuNet (Szymon)
  • FaceNet (Szymon)

Project Structure

FaceDetectionAlgorithms/
├── dataset/
│ └── (contains datasets for training and testing)
├── eigenface.py
├── fisherface.py
├── vgg16.py
├── haar-cascade-project/
│ └── (Haar Cascade implementation)
├── local-binary-patterns-project/
│ └── (LBP implementation)
├── yunet-face-detection/
│ └── (YuNet implementation)
├── facenet-face-recognition/
│ └── (FaceNet implementation)
├── tools/
│ └── (contains utility tools)
├── .gitignore
├── README.md
└── LICENSE

Installation

To get started with the project, clone the repository and install the necessary dependencies:

git clone https://github.com/yourusername/FaceDetectionAlgorithms.git

Make sure you have Python 3.x and pip installed.

Usage

To run each algorithm, use the corresponding script. For example:

python eigenface.py

Make sure to update the paths to the datasets in each script if necessary.

Contributors

  • Hania - EigenFaces, FisherFaces
  • Marta - VGG16
  • Karol - Haar Cascade Classifier, Local Binary Patterns
  • Szymon - YuNet, FaceNet