This repository is an implementation of the End-to-End Spoof-Aggregated Spoofing-Aware Speaker Verification System. The model performance is tested on the ASVSpoof 2019 Dataset.
Show details
- speechbrain==0.5.7
- pandas
- torch==1.9.1
- torchaudio==0.9.1
- nnAudio==0.2.6
- ptflops==0.6.6
- Create a conda environment with
conda env create -f environment.yml
. - Activate the conda environment with
conda activate
.
``
.
├── data
│ │
│ ├── PA
│ │ └── ...
│ └── LA
│ ├── ASVspoof2019_LA_asv_protocols
│ ├── ASVspoof2019_LA_asv_scores
│ ├── ASVspoof2019_LA_cm_protocols
│ ├── ASVspoof2019_LA_train
│ ├── ASVspoof2019_LA_dev
│
│
└── ARawNet
-
Download dataset. Our experiment is trained on the Logical access (LA) scenario of the ASVspoof 2019 dataset. Dataset can be downloaded here.
-
Unzip and save the data to a folder
data
in the same directory asARawNet
as shown in below. -
Run
python preprocess_SASASV.py
Or you can use our processed data directly under "/processed_data".
python train_SASASV.py yaml/SASASV.yaml --data_parallel_backend -data_parallel_count=2
python eval_SASASV.py
If you use this repository, please consider citing:
@article{teng2022sa, title={SA-SASV: An End-to-End Spoof-Aggregated Spoofing-Aware Speaker Verification System}, author={Teng, Zhongwei and Fu, Quchen and White, Jules and Powell, Maria E and Schmidt, Douglas C}, journal={arXiv preprint arXiv:2203.06517}, year={2022} }