- activate conda/pip env and then:
export PROJECT_DIR=$(pwd)
- Fix your path in
testbed_config/{yourname_expnumber}.yaml
python main_testbed_slide.py
-> loop through all slide and return the patch (image) in the whole slide.
python main_testbed_superpixel.py
-> loop through each slide, then loop through all superixel and return the patch (image) in the whole slide.
----- Below config is to run Camil
before start env
export DATA_DIR=/project/hnguyen2/mvu9/camelyon16_features_data/h5_files
down load this file
!gdown 1CS7I0yrTSNLbFk_CzqLrh5TKesZo3uXm
then unzip them into data/camelyon16_feature/h5_files
- to running the training:
python train.py
- to dry run (testing the code with few sample), run:
python train.py --dry_run True
.
├── README.md
├── check_cuda.py
├── data
│ ├── camelyon16_dataset.py
│ ├── camelyon16_features
│ │ └── h5_files
│ ├── camelyon_csv_splits
│ │ ├── splits_0.csv
│ │ ├── splits_1.csv
│ │ ├── splits_2.csv
│ │ ├── splits_3.csv
│ │ └── splits_4.csv
│ ├── label_files
│ │ ├── camelyon_17.csv
│ │ ├── camelyon_data.csv
│ │ └── tcga_data.csv
│ ├── logs
│ └── weights
├── feature_extractor
├── requirements.txt
├── scripts
├── src
│ ├── __init__.py
│ ├── camil.py
│ ├── custom_layers.py
│ ├── nystromformer.py
├── train.py
└── utils
├── __init__.py
├── eval.py
├── helper.py
└── utils.py
Experiment 01:
- use pretrained embedding
- learning rate: 1e-05
- epochs: 30