Contains vendor-specific implementations for Uniswap V3 oracles. The specific functions being called to determine underlying balances will vary between LP implementations, but the underlying logic should be roughly equivalent between all vendors.
We derive the sqrtPriceX96 via Maker's own oracles to prevent price manipulation in the pool:
Define:
p0 = price of token0 in USD
p1 = price of token1 in USD
UNITS_0 = decimals of token0
UNITS_1 = decimals of token1
token1/token0 = (p0 / 10^UNITS_0) / (p1 / 10^UNITS_1) [Conversion from Maker's price ratio into Uniswap's format]
= (p0 * 10^UNITS_1) / (p1 * 10^UNITS_0)
sqrtPriceX96 = sqrt(token1/token0) * 2^96 [From Uniswap's definition]
= sqrt((p0 * 10^UNITS_1) / (p1 * 10^UNITS_0)) * 2^96
= sqrt((p0 * 10^UNITS_1) / (p1 * 10^UNITS_0)) * 2^48 * 2^48
= sqrt((p0 * 10^UNITS_1 * 2^96) / (p1 * 10^UNITS_0)) * 2^48
Once we have the sqrtPriceX96
we can use that to compute the fair reserves for each token. This part may be slightly subjective depending on the implementation, but we expect most tokens to provide something like getUnderlyingBalancesAtPrice(uint160 sqrtPriceX96)
which will forward our oracle-calculated sqrtPriceX96
to the Uniswap-provided LiquidityAmounts.getAmountsForLiquidity(...)
. This function will return the fair reserves for each token. Vendor-specific logic is then used to tack any uninvested fees on top of those amounts.
Once we have the fair reserves and the prices we can compute the token price by:
Token Price = TVL / Token Supply
= (r0 * p0 + r1 * p1) / totalSupply
The goal is to check that this calculation does not overflow or lose precision:
uint160 sqrtPriceX96 = sqrt((p0 * 10^UNITS_1 * 2^96) / (p1 * 10^UNITS_0)) * 2^48
Notes:
p0
andp1
are uint256wad
s, denoting token price inusd
.- We assume that the
sqrt
function does not have overflow or precision problems as it is used inuniv2-lp-oracle
and tested through unit tests.
Analysis:
- For numerator expression to not overflow this needs to hold:
p0 * 10^UNITS_1 * 2^96 < 2^256 // 2^96 < 10^29, 2^256 > 10^77 =>
p0 * 10^UNITS_1 * 10^29 < 10^77 // p0 = token0_usd_price * 10^18, UNITS_1 <= 18
token0_usd_price * 10^18 * 10^18 * 10^29 < 10^77
token0_usd_price < 10^12
- For the division operation not to lose precision this needs to hold:
(p0 * 10^UNITS_1 * 2^96) >> (p1 * 10^UNITS_0) // 2^96 > 10^28, UNITS_1 >= 0, UNITS_0 <= 18
(p0 * 10^0 * 10^28) >> p1 * 10^18 // p0 = token0_usd_price * 10^18, p1 = token1_usd_price * 10^18
10^10 >> token1_usd_price / token0_usd_price
- For the full expression not to overflow a uint160 this needs to hold:
sqrt((p0 * 10^UNITS_1 * 2^96) / (p1 * 10^UNITS_0)) * 2^48 < 2^160
sqrt((p0 * 10^UNITS_1 * 2^96) / (p1 * 10^UNITS_0)) < 2^112 // 2^96 < 10^29, UNITS_1 <= 18, UNITS_0 >= 0, 2^112 > 10^33
sqrt((p0 * 10^18 * 10^29) / (p1 * 10^0)) < 10^33
sqrt((p0 * 10^18 * 10^29) / p1) < 10^33 // ^2
(p0 * 10^47) / p1 < 10^66
(p0 / p1) < 10^19 // p0 = token0_usd_price * 10^18, p1 = token1_usd_price * 10^18
token0_usd_price / token1_usd_price < 10^19