/optic-nerve-cnn

Code repository for a paper "Optic Disc and Cup Segmentation Methods for Glaucoma Detection with Modification of U-Net Convolutional Neural Network"

Primary LanguageJupyter NotebookMIT LicenseMIT

Optic Disc and Cup Segmentation Methods with U-Net

This repository contains code in support of the paper: "Optic Disc and Cup Segmentation Methods for Glaucoma Detection with Modification of U-Net Convolutional Neural Network", available in several versions:

  1. Sevastopolsky A., Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network, Pattern Recognition and Image Analysis 27 (2017), no. 3, 618–624.
  2. Sevastopolsky, Artem. Optic Disc and Cup Segmentation Methods for Glaucoma Detection with Modification of U-Net Convolutional Neural Network. arXiv preprint arXiv:1704.00979 (2017).

Built with Python 2.7 and Keras.

See scripts folder for notebooks for training with clarification of usage.

HDF5 datasets can be recreated with scripts/Organize datasets.ipynb notebook or downloaded from this url.

models_weights folder contains pre-trained models.

Click the following links to watch content of notebooks in a handy way:

The software is distributed under MIT License, which requires that copyright notice and this permission notice shall be included in all copies or substantial portions of this software. Commercial use, distribution, modification and private use are allowed, but no warranty or support can be guaranteed.