/antidupe

Image deduplicator using CNN, Cosine Similarity, Image Hashing, Structural Similarity Index Measurement, and Euclidean Distance

Primary LanguagePythonApache License 2.0Apache-2.0


Antidupe

Image deduplicator using CNN, Cosine Similarity, Image Hashing, Structural Similarity Index Measurement, and Euclidean Distance

Installation

You can install Antidupe using pip:

pip install antidupe

Usage

Basic Usage

from antidupe import Antidupe
from PIL import Image

# Initialize Antidupe
antidupe = Antidupe()

# Load images (as numpy arrays or PIL.Image objects)
image1 = Image.open("image1.jpg")
image2 = Image.open("image2.jpg")

# Check for duplicates
is_duplicate = antidupe.predict([image1, image2])

if is_duplicate:
    print("Duplicate images detected!")
else:
    print("Images are not duplicates.")

Customizing Thresholds

You can customize the similarity thresholds for each technique during runtime or initialization:

  • Note that negative values will disable the measurement layer.
# Initialize Antidupe with custom thresholds
custom_thresholds = {
    'ih': 0.2,    # Image Hash
    'ssim': 0.2,  # SSIM
    'cs': 0.2,    # Cosine Similarity
    'cnn': 0.2,   # CNN
    'dedup': 0.1 # Mobilenet
}
antidupe = Antidupe(limits=custom_thresholds)

# Check for duplicates
is_duplicate = antidupe.predict([image1, image2])

Debugging

You can enable debug mode to print debugging messages:

# Initialize Antidupe with debug mode enabled
antidupe = Antidupe(debug=True)

# Check for duplicates
is_duplicate = antidupe.predict([image1, image2])

Changing Limits During Runtime

You can change the similarity thresholds during runtime:

# Set new limits during runtime
new_thresholds = {
    'ih': 0.1,
    'ssim': 0.1,
    'cs': 0.1,
    'cnn': 0.1,
    'dedup': 0.15
}
antidupe.set_limits(limits=new_thresholds)

# Check for duplicates
is_duplicate = antidupe.predict([image1, image2])

Requirements

  • Python 3.x
  • SSIM PIL
  • ImageDeDup
  • NumPy
  • MatPlotLib
  • Pillow
  • ImageHash
  • Torch
  • Efficientnet Pytorch
  • TorchVision

License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.