/EXPLORING_SKLEARN

Exploring sklearn 🌟

Primary LanguageJupyter Notebook

21-DAYS-PROGRAMMING-CHALLENGE-ACES

@@ Exploring sklearn! @@

Bit intro About library

A python library built upon NumPy ,SciPy and Matplotlib orignal name scikit-learn.

Installation

pip install scikit-learn

Features of Sklearn
  1. Supervised Learning Model
  2. Unsupervised learning Model
  3. Clustering
  4. Dimenstionality Reduction
  5. Ensemble Methods
  6. Feature Extraction
  7. Feature Selection
  8. Open Source

πŸ’  Day 1 :Sklearn Modelling Process:
  1. Loading ,splitting data
  2. Training Model
  3. Model Persistence
  4. Preprocessing the Dataset(Binarisation,Mean Removal ,Scaling,Noemalisation(L1,L2 normalisation))

πŸ’  Day 2:Linear Modelling :
  1. Linear Regression (SL)(Regression) ( logit or MaxEnt Classifier)

πŸ’  Day 3:Linear Modelling :
  1. Logistic Regression (SL)(Classification)
  2. Lasso
  3. Ridge
  4. ElasticNet

πŸ’  Day 4:Gradient Descent Algorithm
  1. Batch Gradient Descent
  2. Stochastic Gradient Descent
  3. Mini Batch Gradient Descent

πŸ’  Day 5:Suppot Vector Machine
  1. SVM (SL,Classification+Regression)

πŸ’  Day 6:KNN Algorithm
  1. KNN as Classifier (SL,Classification+Regression)
  2. KNN as Regressor

πŸ’  Day 7:Metrics and scoring

(Not did much read a bit theory)

  1. Confusion_matrix
  2. Accuracy
  3. Precision
  4. Recall or Sensitivity
  5. Specificity

πŸ’  Day 8:PCA
  1. Incremental PCA (UL + dimensionality Reduction)
  2. Kernel PCA

πŸ’  Day 9:Tree
  1. Decision Tree (ID3 iterative dichotomiser 3)(SL,CART)
  2. Random Forest

πŸ’  Day 10:Naive Bais
  1. Gaussian Naive Bayes (Classification)

πŸ’  Day 11:Dimension Reduction
  1. Principal Component Analysis(PCA)

πŸ’  Day 12:Dimension Reduction
  1. Singular Vector Decomposition(SVD) [not did much today kam hai kafi!]

πŸ’  Day 13:Ensemble methods
  1. Voting Classifier
    Soft Voting + with GridSearchCV

πŸ’  Day 14:Gradient Boosting

Read theory about all

  1. GBA

πŸ’  Day 15:DATA PROCESSING

Steps involved in data processing

  1. Treating up missing values
  2. Treating outliners
  3. Dimentionality Reduction
  4. Variable Transformation and Feature Engineering

πŸ’  Day 16:Recommender System
  1. Simple REcommende using IBM formula

πŸ’  Day 17:Recommender System
  1. Content based Recommendation(tfid)

πŸ’  Day 18:Mean shift Clustering Algorithm

πŸ’  Day 19: Not a good day
  1. Not having laptop with meπŸ˜₯ signed in through phone will read about different types of regression. no code today πŸ˜”.

πŸ’  Day 20: Pipeline
  1. How to create one and use.
    Laptop didn't come today.
    Now I am pro at using GitHub on phone.πŸ’

πŸ’  Day 21 Anomaly detection

RESOUCES

Tutorial

Happy to complete this Chanllenge and for sure will continue Learning! 😊