Edit and set paths using
source set_env.sh
Store weights in this folder structure
-cdfsl
-weights
-imagenet-net
-model_best.pth.tar
-url
-model_best.pth.tar
For ImageNet trained backbone
python ./finetune.py --model.name=imagenet-net --model.backbone=resnet18 --data.test traffic_sign mnist --train.max_iter 50 --train.learning_rate 0.001
For using URL backbone
python ./finetune.py --model.name=url --model.backbone=resnet18 --data.test traffic_sign mnist --train.max_iter 50 --train.learning_rate 0.001
python ./bn_finetune.py --model.name=url --model.backbone=resnet18 --data.test traffic_sign mnist --train.max_iter 50 --train.learning_rate 0.001
Trainable params: batch norm parameters
python prototypical_network.py --data.test cifar10 --model.name url --log logs/cifar10 --test.size 50 --train.max_iter 50 --train.learning_rate 0.001