Code for our paper Memorization Precedes Generation: Learning Unsupervised GANs with Memory Networks by Youngjin Kim, Minjung Kim, Gunhee Kim. This repository includes codes for training and testing MemoryGAN with Fashion-MNIST, affine-transformed MNIST and CIFAR10 datasets. It also include model parameters of MemoryGAN that we trained with CIFAR10 dataset. If you use this in your research, we kindly ask that you cite the below ICLR 2018 paper.
@inproceedings{
kim2018memorization,
title={Memorization Precedes Generation: Learning Unsupervised {GAN}s with Memory Networks},
author={Youngjin Kim and Minjung Kim and Gunhee Kim},
booktitle={International Conference on Learning Representations},
year={2018},
url={https://openreview.net/forum?id=rkO3uTkAZ},
}
- python 2
- tensorflow 1.4
Install python packages
pip install -r requirements.txt
- Once you run the trainig script, it will automatically download and places datasets into
dataset
folder. - See
model/train.py
,affmnist.py
,fashion.py
andcifar10.py
for more details.
- Run
run.py
with arguments. For examples, run one of following commands.
python run.py --dataset=fashion --lr_decay=False --use_augmentation=False
python run.py --dataset=affmnist --lr_decay=False --use_augmentation=False
python run.py --dataset=cifar10 --lr_decay=True --use_augmentation=True
- See more arguments and hyperparameter settings in
run.py
andmodels/config.py
- Run
run.py
with--load_cp_dir
and--is_train
arguments
python run.py --dataset=cifar10 --is_train=False --load_cp_dir=checkpoint/pretrained_model
MIT License. Please see the LICENSE file for details.