/default-credit-card-prediction

Machine Learning Project for predicting Credit Card Defaults

Primary LanguagePythonMIT LicenseMIT

Default-Credit-Card-Prediction

Machine Learning Project for predicting Credit Card Defaults.

Features:

  • Dataset Loading
  • Feature Assessment/Visualization:
    • Normalized Histogram Distribution
    • Box Plots
    • Pairwise Relationships
    • Empirical Cumulative/Standard Density Functions
    • Pearson Correlation
    • 2D PCA
    • 2D LDA
  • Preprocessing:
    • Standardization
    • Scaling
    • Normalization
    • Dataset Balancing
  • Feature Selection:
    • (Filter) Information Gain
    • (Filter) Gain Ratio
    • (Filter) Chi-squared Test
    • (Filter) Kruskal-Wallis Test
    • (Filter) Fisher Score
    • (Filter) Pearson Correlation (Feature-Feature, Feature-Class)
    • (Filter) mRMR
    • (Filter) Area Under the Curve (AUC)
    • (Wrapper) Sequential Forward/Backward Selection
    • (Wrapper) Recursive Feature Elimination
  • Feature Reduction:
    • Principal Component Analysis (PCA)
    • Fisher's Linear Discriminant Analysis (LDA)
  • Classification:
    • Minimum Distance Classifier
    • k-Nearest-Neighbors (kNN)
    • Naive Bayes
    • Support Vector Machines (SVM)
    • Decision Tree (CART)
    • Random Forest
  • Evaluation:
    • Stratified K-folds Cross Validation
    • Receiver Operating Characteristic (ROC) Curves
    • Precision-Recall Curves

####Requirements:####

####Usage:####

usage: python default_predictor.py

####Examples:####

eg

eg

eg

eg

eg

eg

eg

eg

eg

eg

eg

eg

eg