/ruby-openai

OpenAI API + Ruby! 🤖❤️ Now with Azure support!

Primary LanguageRubyMIT LicenseMIT

Ruby OpenAI

Gem Version GitHub license CircleCI Build Status

Use the OpenAI API with Ruby! 🤖❤️

Stream text with GPT-4, transcribe and translate audio with Whisper, or create images with DALL·E...

Ruby AI Builders Discord

Quick guide to streaming ChatGPT with Rails 7 and Hotwire

Follow me on Twitter for more Ruby / AI content

Bundler

Add this line to your application's Gemfile:

gem "ruby-openai"

And then execute:

$ bundle install

Gem install

Or install with:

$ gem install ruby-openai

and require with:

require "openai"

Usage

Quickstart

For a quick test you can pass your token directly to a new client:

client = OpenAI::Client.new(access_token: "access_token_goes_here")

With Config

For a more robust setup, you can configure the gem with your API keys, for example in an openai.rb initializer file. Never hardcode secrets into your codebase - instead use something like dotenv to pass the keys safely into your environments.

OpenAI.configure do |config|
    config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
    config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional.
end

Then you can create a client like this:

client = OpenAI::Client.new

Custom timeout or base URI

The default timeout for any request using this library is 120 seconds. You can change that by passing a number of seconds to the request_timeout when initializing the client. You can also change the base URI used for all requests, eg. to use observability tools like Helicone:

client = OpenAI::Client.new(
    access_token: "access_token_goes_here",
    uri_base: "https://oai.hconeai.com/",
    request_timeout: 240
)

or when configuring the gem:

OpenAI.configure do |config|
    config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN")
    config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional
    config.uri_base = "https://oai.hconeai.com/" # Optional
    config.request_timeout = 240 # Optional
end

Azure

To use the Azure OpenAI Service API, you can configure the gem like this:

    OpenAI.configure do |config|
        config.access_token = ENV.fetch("AZURE_OPENAI_API_KEY")
        config.uri_base = ENV.fetch("AZURE_OPENAI_URI")
        config.api_type = :azure
        config.api_version = "2023-03-15-preview"
    end

where AZURE_OPENAI_URI is e.g. https://custom-domain.openai.azure.com/openai/deployments/gpt-35-turbo

Models

There are different models that can be used to generate text. For a full list and to retrieve information about a single model:

client.models.list
client.models.retrieve(id: "text-ada-001")

Examples

ChatGPT

ChatGPT is a model that can be used to generate text in a conversational style. You can use it to generate a response to a sequence of messages:

response = client.chat(
    parameters: {
        model: "gpt-3.5-turbo", # Required.
        messages: [{ role: "user", content: "Hello!"}], # Required.
        temperature: 0.7,
    })
puts response.dig("choices", 0, "message", "content")
# => "Hello! How may I assist you today?"

Streaming ChatGPT

Quick guide to streaming ChatGPT with Rails 7 and Hotwire

You can stream from the API in realtime, which can be much faster and used to create a more engaging user experience. Pass a Proc (or any object with a #call method) to the stream parameter to receive the stream of text chunks as they are generated. Each time one or more chunks is received, the proc will be called once with each chunk, parsed as a Hash. If OpenAI returns an error, ruby-openai will pass that to your proc as a Hash.

client.chat(
    parameters: {
        model: "gpt-3.5-turbo", # Required.
        messages: [{ role: "user", content: "Describe a character called Anna!"}], # Required.
        temperature: 0.7,
        stream: proc do |chunk, _bytesize|
            print chunk.dig("choices", 0, "delta", "content")
        end
    })
# => "Anna is a young woman in her mid-twenties, with wavy chestnut hair that falls to her shoulders..."

Functions

You can describe and pass in functions and the model will intelligently choose to output a JSON object containing arguments to call those them. For example, if you want the model to use your method get_current_weather to get the current weather in a given location:

def get_current_weather(location:, unit: "fahrenheit")
  # use a weather api to fetch weather
end

response =
  client.chat(
    parameters: {
      model: "gpt-3.5-turbo-0613",
      messages: [
        {
          "role": "user",
          "content": "What is the weather like in San Francisco?",
        },
      ],
      functions: [
        {
          name: "get_current_weather",
          description: "Get the current weather in a given location",
          parameters: {
            type: :object,
            properties: {
              location: {
                type: :string,
                description: "The city and state, e.g. San Francisco, CA",
              },
              unit: {
                type: "string",
                enum: %w[celsius fahrenheit],
              },
            },
            required: ["location"],
          },
        },
      ],
    },
  )

message = response.dig("choices", 0, "message")

if message["role"] == "assistant" && message["function_call"]
  function_name = message.dig("function_call", "name")
  args =
    JSON.parse(
      message.dig("function_call", "arguments"),
      { symbolize_names: true },
    )

  case function_name
  when "get_current_weather"
    get_current_weather(**args)
  end
end
# => "The weather is nice 🌞"

Completions

Hit the OpenAI API for a completion using other GPT-3 models:

response = client.completions(
    parameters: {
        model: "text-davinci-001",
        prompt: "Once upon a time",
        max_tokens: 5
    })
puts response["choices"].map { |c| c["text"] }
# => [", there lived a great"]

Edits

Send a string and some instructions for what to do to the string:

response = client.edits(
    parameters: {
        model: "text-davinci-edit-001",
        input: "What day of the wek is it?",
        instruction: "Fix the spelling mistakes"
    }
)
puts response.dig("choices", 0, "text")
# => What day of the week is it?

Embeddings

You can use the embeddings endpoint to get a vector of numbers representing an input. You can then compare these vectors for different inputs to efficiently check how similar the inputs are.

response = client.embeddings(
    parameters: {
        model: "babbage-similarity",
        input: "The food was delicious and the waiter..."
    }
)

puts response.dig("data", 0, "embedding")
# => Vector representation of your embedding

Files

Put your data in a .jsonl file like this:

{"prompt":"Overjoyed with my new phone! ->", "completion":" positive"}
{"prompt":"@lakers disappoint for a third straight night ->", "completion":" negative"}

and pass the path to client.files.upload to upload it to OpenAI, and then interact with it:

client.files.upload(parameters: { file: "path/to/sentiment.jsonl", purpose: "fine-tune" })
client.files.list
client.files.retrieve(id: "file-123")
client.files.content(id: "file-123")
client.files.delete(id: "file-123")

Fine-tunes

Upload your fine-tuning data in a .jsonl file as above and get its ID:

response = client.files.upload(parameters: { file: "path/to/sentiment.jsonl", purpose: "fine-tune" })
file_id = JSON.parse(response.body)["id"]

You can then use this file ID to create a fine-tune model:

response = client.finetunes.create(
    parameters: {
    training_file: file_id,
    model: "ada"
})
fine_tune_id = response["id"]

That will give you the fine-tune ID. If you made a mistake you can cancel the fine-tune model before it is processed:

client.finetunes.cancel(id: fine_tune_id)

You may need to wait a short time for processing to complete. Once processed, you can use list or retrieve to get the name of the fine-tuned model:

client.finetunes.list
response = client.finetunes.retrieve(id: fine_tune_id)
fine_tuned_model = response["fine_tuned_model"]

This fine-tuned model name can then be used in completions:

response = client.completions(
    parameters: {
        model: fine_tuned_model,
        prompt: "I love Mondays!"
    }
)
response.dig("choices", 0, "text")

You can delete the fine-tuned model when you are done with it:

client.finetunes.delete(fine_tuned_model: fine_tuned_model)

Image Generation

Generate an image using DALL·E! The size of any generated images must be one of 256x256, 512x512 or 1024x1024 - if not specified the image will default to 1024x1024.

response = client.images.generate(parameters: { prompt: "A baby sea otter cooking pasta wearing a hat of some sort", size: "256x256" })
puts response.dig("data", 0, "url")
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."

Ruby

Image Edit

Fill in the transparent part of an image, or upload a mask with transparent sections to indicate the parts of an image that can be changed according to your prompt...

response = client.images.edit(parameters: { prompt: "A solid red Ruby on a blue background", image: "image.png", mask: "mask.png" })
puts response.dig("data", 0, "url")
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."

Ruby

Image Variations

Create n variations of an image.

response = client.images.variations(parameters: { image: "image.png", n: 2 })
puts response.dig("data", 0, "url")
# => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..."

Ruby Ruby

Moderations

Pass a string to check if it violates OpenAI's Content Policy:

response = client.moderations(parameters: { input: "I'm worried about that." })
puts response.dig("results", 0, "category_scores", "hate")
# => 5.505014632944949e-05

Whisper

Whisper is a speech to text model that can be used to generate text based on audio files:

Translate

The translations API takes as input the audio file in any of the supported languages and transcribes the audio into English.

response = client.translate(
    parameters: {
        model: "whisper-1",
        file: File.open("path_to_file", "rb"),
    })
puts response["text"]
# => "Translation of the text"

Transcribe

The transcriptions API takes as input the audio file you want to transcribe and returns the text in the desired output file format.

response = client.transcribe(
    parameters: {
        model: "whisper-1",
        file: File.open("path_to_file", "rb"),
    })
puts response["text"]
# => "Transcription of the text"

Development

After checking out the repo, run bin/setup to install dependencies. You can run bin/console for an interactive prompt that will allow you to experiment.

To install this gem onto your local machine, run bundle exec rake install.

Warning

If you have an OPENAI_ACCESS_TOKEN in your ENV, running the specs will use this to run the specs against the actual API, which will be slow and cost you money - 2 cents or more! Remove it from your environment with unset or similar if you just want to run the specs against the stored VCR responses.

Release

First run the specs without VCR so they actually hit the API. This will cost 2 cents or more. Set OPENAI_ACCESS_TOKEN in your environment or pass it in like this:

OPENAI_ACCESS_TOKEN=123abc bundle exec rspec

Then update the version number in version.rb, update CHANGELOG.md, run bundle install to update Gemfile.lock, and then run bundle exec rake release, which will create a git tag for the version, push git commits and tags, and push the .gem file to rubygems.org.

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/alexrudall/ruby-openai. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the code of conduct.

License

The gem is available as open source under the terms of the MIT License.

Code of Conduct

Everyone interacting in the Ruby OpenAI project's codebases, issue trackers, chat rooms and mailing lists is expected to follow the code of conduct.