/SimilArt

Information visualization project on SimilArt, a platform for exploring and comparing artworks.

Primary LanguageJavaScript

Infovis

This repository contains the code for SimilArt (a platform for visualization, explaration and comparision of artworks) group 16 of the Information Visualization course at the University of Amsterdam.

Preview: Cast | Slide | Report

Group members

  • Masoumeh Bakhtiariziabari
  • Kylian van Geijtenbeek
  • Barry Hendriks
  • Iulia Ionescu
  • Martine Toering

Supervisor

  • Gjorgji Strezoski

Path structure:

please upload/save dataset and files with this structure:

├── ...
├── Infovis                           # Code files
│   ├── data                          # This folder contains the codes for downloading and preprocessing of the dataset
│   ├── app
|   |   ├── data
|   |   ├── main                      # Flask routes and events
|   |   ├── templates                 # HTML templates for the app
|   |   ├── static
|   |   |   ├── css                   # Css style files
|   |   |   ├── js                    # Javascript files
|   |   |   └── subset                # The selected subset of low resolution images should be saved in this folder.
|   |   └── ...
│   ├── README.md
│   ├── requirements.txt
│   ├── start_app.sh
│   └── run.py
|   | 
|   | 
| 
├── Dataset                           # Dataset root directory it contains omniart_v3 images and csv files
│   ├── data                          # This folder is the main directory that we read data from it/ save related preprocing files in it
│   │   ├── img_300x                  # It containes low res images. If you have downloaded the whole dataset it should be save here
│   │   ├── csv                       # This folder contains the metadatas (including artwork_tpye and general_type) for low res images
│   │   │   └── omniart_v3_datadump.csv
│   │   └── features.csv              # This file is the calculated features of all images by running ../Infovis/extract_features.py
│   │
│   └── artsight_csvs                 # This directory contains 3 different kinds of metadata file each covers a few dataset attributes.
│       ├── metadatas.csv             
│       ├── metalevelmeta.csv         
│       └── reproductions.csv
└── ...


Data downloading/preproccessing:

Download 150'000 images from 10 subsets of "general_type" category:

python data\download_subset_dataset.py --data_root \path\to\dirctory\to\save\dataset --metadata_root \path\to\dirctory\to\save\or\load\metadata --url_root http:\\url\path\to\omniart_v3 --dl_dataset --dl_metadata

Extract features from the pretrained Resnet18:

python data\extract_features.py --dataset_path \path\to\image\dataset\directory --feature_path \path\the\directory\to\save\features

Running script

python run.py