Aggregating Crowd Wisdoms with Label-aware Autoencoders
Paper
- Split the dataset into training and validation parts
- Start training model
- When loss on validation part starts to increase authors stop training
- No explicit stopping strategy has been given by the authors
- So we stop training after max patience step succeeded
- To find a final solution we should use hyperparameters search using validation loss
Accuracy - validation loss:
dataset |
LAA-B |
Majority Vote |
LAA-B(Paper) |
bluebirds |
0.8056 |
0.7593 |
0.889 |
syntetic overlap 3 n_classes 3 n_tasks 5000 |
0.8932 |
0.9006 |
|
syntetic overlap 2 n_classes 3 n_tasks 5000 |
0.777 |
0.7892 |
|
It looks like you could achieve greater results in case of using golden labeled data for the best model search:
Accuracy - validation via golden dataset:
dataset |
LAA-B |
Majority Vote |
bluebirds |
0.907 |
0.7674 |
syntetic overlap 3 n_classes 3 n_tasks 5000 |
0.8998 |
0.8985 |
syntetic overlap 2 n_classes 3 n_tasks 5000 |
0.8085 |
0.7822 |
Wandb Sweeps and best run
python -m src inference --dataset-name=classification_dataset_generator --no-logging --dataset-name=bluebirds --batch-size=33 --d-kl=0.0014471807379961906 --lr=0.1038585651189214 --n-epoch=152 --patience=15 --reg-1=6.420109871402643e-05
python -m src inference --dataset-name=classification_dataset_generator --dataset-kwargs="{\"n_workers\": 100, \"n_tasks\": 5000, \"overlap\": 3, \"n_classes\": 3, \"good_probability\": 0.9, \"good_workers_frac\": 0.6, \"bad_probability\": 0.6}" --batch-size=93 --d-kl=0.007161637022033341 --lr=0.12966202803623433 --n-epoch=78 --patience=2 --reg-1=4.9742867272127485e-05 --no-logging
python -m src inference --dataset-name=classification_dataset_generator --dataset-kwargs="{\"n_workers\": 100, \"n_tasks\": 5000, \"overlap\": 2, \"n_classes\": 3, \"good_probability\": 0.9, \"good_workers_frac\": 0.6, \"bad_probability\": 0.6}" --batch-size=86 --d-kl=0.009459693322090797 --lr=0.003334278174792921 --n-epoch=242 --patience=8 --reg-1=0.0001390032305118152 --no-logging