/forge-tools

Tools to extend the functionality of the Mojo standard library

Primary LanguageMojoOtherNOASSERTION

Forge Tools

Tools to extend the functionality of the Mojo standard library. Hopefully they will all someday be available in the stdlib. The main focus is to only include things that would make sense in such a library.

Keep in mind: Everything is still a Work In Progress and mojo nightly is constantly changing.

How to Install

magic run ./scripts/package-lib.sh

The semi-compiled package will be under ./build/forge_tools.mojopkg

How to run tests

Test an entire directory or subdirectory or specific file

magic run ./scripts/test.sh src/test/

How to run benchmarks

Run an entire directory or subdirectory or specific file (sequentially)

magic run ./scripts/benchmark.sh src/benchmarks/

Packages

builtin

error.mojo

Error2: This type represents a parametric Error.

collections

array.mojo

Array

Plans for Array in Mojo's stdlib: progressively migrate the algorithms to List by making use of conditional conformance and other mechanisms.

An Array allocated on the stack with a capacity known at compile time.

It is backed by a SIMD vector. This struct has the same API as a regular Array.

This is typically faster than Python's Array as it is stack-allocated and does not require any dynamic memory allocation and uses vectorized operations wherever possible.

Examples:

from forge_tools.collections import Array
alias Arr = Array[DType.int8, 3]
a = Arr(1, 2, 3)
b = Arr(1, 2, 3)
print(a.max()) # 3
print(a.min()) # 1
print((a - b).sum()) # 0
print(a.avg()) # 2
print(a * b) # [1, 4, 9]
print(2 in a) # True
print(a.index(2).or_else(-1)) # 1
print((Arr(2, 2, 2) % 2).sum()) # 0
print((Arr(2, 2, 2) // 2).sum()) # 3
print((Arr(2, 2, 2) ** 2).sum()) # 12
print(a.dot(b)) # 14
print(a.cross(b)) # [0, 0, 0]
print(a.cos(b)) # 1
print(a.theta(b)) # 0
a.reverse()
print(a) # [3, 2, 1]

fn mapfunc(a: Int8) -> Scalar[DType.bool]:
    return a < 3
print(a.map(mapfunc)) # [False, True, True]

fn filterfunc(a: Int8) -> Scalar[DType.bool]:
    return a < 3
print(a.filter(filterfunc)) # [2, 1]

fn applyfunc(a: Int8) -> Int8:
    return a * 2
a.apply(applyfunc, where=filterfunc)
print(a) # [3, 4, 2]

print(a.concat(a.reversed() // 2)) # [3, 4, 2, 1, 2, 1]

result.mojo

Plans for result.mojo in Mojo's stdlib: None, after some discussion raising functions remain the norm.

Result

Defines Result, a type modeling a value which may or may not be present. With an Error in the case of failure.

Result values can be thought of as a type-safe nullable pattern. Your value can take on a value or None, and you need to check and explicitly extract the value to get it out.

Examples:

a = Result(1)
b = Result[Int]()
if a:
    print(a.value())  # prints 1
if b:  # bool(b) is False, so no print
    print(b.value())
c = a.or_else(2)
d = b.or_else(2)
print(c)  # prints 1
print(d)  # prints 2

And if more information about the returned Error is wanted it is available.

a = Result(1)
b = Result[Int](err=Error("something went wrong"))
c = Result[Int](None, Error("error 1"))
d = Result[Int](err=Error("error 2"))
if a:
    print(a.err)  # prints ""
if not b:
    print(b.err) # prints "something went wrong"

if c.err:
    print("c had an error")

# TODO: pattern matching
if str(d.err) == "error 1":
    print("d had error 1")
elif str(d.err) == "error 2":
    print("d had error 2")

A Result with an Error can also be retuned early:

fn func_that_can_err[A: CollectionElement]() -> Result[A]:
    return Error("failed")

fn return_early_if_err[T: CollectionElement, A: CollectionElement]() -> Result[T]:
    result: Result[A] = func_that_can_err[A]()
    if not result:
        # the internal err gets transferred to a Result[T]
        return result
        # its also possible to do:
        # return None, Error("func_that_can_err failed")
    val = result.value()
    final_result: T
    ...
    return final_result

Result2

A parametric Result2 type.

uses:

struct Error2[T: StringLiteral = "AnyError"](Stringable, Boolable):
    """This type represents a parametric Error."""

    alias kind = T
    """The kind of Error."""
    message: String
    """The Error message."""
      ...
    fn __eq__(self, value: StringLiteral) -> Bool:
        """Whether the Error message is set and self.kind is equal to the
        StringLiteral. Error kind "AnyError" matches with all errors.

        Args:
            value: The StringLiteral to compare to.

        Returns:
            The Result.
        """

        return bool(self) and (self.kind == value or value == "AnyError")

This could be expanded upon:

struct Result2[
    T: CollectionElement,
    E1: StringLiteral = "AnyError",
    E2: StringLiteral = "AnyError",
    E3: StringLiteral = "AnyError",
    E4: StringLiteral = "AnyError",
](Boolable):
    alias _type = Variant[NoneType, T]
    _value: Self._type
    alias _err_type = Variant[
        Error2["AnyError"],
        Error2[E1],
        Error2[E2],
        Error2[E3],
        Error2[E4],
    ]

that way:

fn do_something(i: Int) -> Result2[Int, "IndexError", "OtherError"]:
    ...

fn do_some_other_thing() -> Result2[String, "OtherError"]:
    a = do_something(-1)
    if a.err == "OtherError":
        return a # error gets transferred
    elif a.err == "IndexError":
        return a # error message gets transferred
    elif a.err: # some unknow error after an API change
        return a
    return "success"

complex

quaternion.mojo

Plans for quaternion.mojo in Mojo's stdlib: None, it is a very niche module.

Quaternion

struct Quaternion[T: DType = DType.float64]:
    """Quaternion, a structure often used to represent rotations.
    Allocated on the stack with very efficient vectorized operations.

    Parameters:
        T: The type of the elements in the Quaternion, must be a
            floating point type.
    """

    alias _vec_type = SIMD[T, 4]
    alias _scalar_type = Scalar[T]
    vec: Self._vec_type
    """The underlying SIMD vector."""

    ...

    fn __mul__(self, other: Self) -> Self:
        """Calculate the Hamilton product of self with other.

        Args:
            other: The other Quaternion.

        Returns:
            The result.
        """

        alias sign0 = Self._vec_type(1, -1, -1, -1)
        alias sign1 = Self._vec_type(1, 1, 1, -1)
        alias sign2 = Self._vec_type(1, -1, 1, 1)
        alias sign3 = Self._vec_type(1, 1, -1, 1)
        rev = other.vec.shuffle[3, 2, 1, 0]()
        w = self.dot(other.vec * sign0)
        i = self.dot(rev.rotate_right[2]() * sign1)
        j = self.dot(other.vec.rotate_right[2]() * sign2)
        k = self.dot(rev * sign3)
        return Self(w, i, j, k)

DualQuaternion

struct DualQuaternion[T: DType = DType.float64]:
    """DualQuaternion, a structure nascently used to represent 3D
    transformations and rigid body kinematics. Allocated on the
    stack with very efficient vectorized operations.

    Parameters:
        T: The type of the elements in the DualQuaternion, must be a
            floating point type.
    """

    alias _vec_type = SIMD[T, 8]
    alias _scalar_type = Scalar[T]
    vec: Self._vec_type
    """The underlying SIMD vector."""

    ...

    fn __mul__(self, other: Self) -> Self:
        """Multiply self with other.

        Args:
            other: The other DualQuaternion.

        Returns:
            The result.
        """

        alias Quat = Quaternion[T]
        a = Quat(self.vec.slice[4]())
        b = Quat(self.vec.slice[4, offset=4]())
        c = Quat(other.vec.slice[4]())
        d = Quat(other.vec.slice[4, offset=4]())
        return Self((a * c).vec.join((a * d + b * c).vec))

datetime

Plans for the datetime package in Mojo's stdlib: Waiting for the Mojo team.

  • DateTime
    • A structure aware of TimeZone, Calendar, and leap days and seconds.
    • Nanosecond resolution, though when using dunder methods (e.g. dt1 == dt2) it has only Microsecond resolution.
  • Date
    • A structure aware of TimeZone, Calendar, and leap days and seconds.
  • DateTime64, DateTime32, DateTime16, DateTime8
    • Fast implementations of DateTime, no leap seconds, and some have much lower resolutions but better performance.
  • TimeZone
    • By default UTC, highly customizable and options for full or partial IANA timezones support.
  • Notes:
    • The caveats of each implementation are better explained in each struct's docstrings.

Examples:

from testing import assert_equal, assert_true
from forge_tools.datetime import DateTime, Calendar, IsoFormat
from forge_tools.datetime.calendar import PythonCalendar, UTCCalendar

alias DateT = DateTime[iana=False, pyzoneinfo=False, native=False]
dt = DateT(2024, 6, 18, 22, 14, 7)
print(dt) # 2024-06-18T22:14:07+00:00
alias fstr = IsoFormat(IsoFormat.HH_MM_SS) 
iso_str = dt.to_iso[fstr]()
dt = (
    DateT.from_iso[fstr](iso_str, calendar=Calendar(2024, 6, 18))
    .value()
    .replace(calendar=Calendar()) # Calendar() == PythonCalendar
)
print(dt) # 2024-06-18T22:14:07+00:00


# TODO: current mojo limitation. Parametrized structs need to be bound to an
# alias and used for interoperability
# customtz = TimeZone[False, False, False]("my_str", 1, 0) 
tz_0 = DateT._tz("my_str", 0, 0)
tz_1 = DateT._tz("my_str", 1, 0)
assert_equal(DateT(2024, 6, 18, 0, tz=tz_0), DateT(2024, 6, 18, 1, tz=tz_1))


# using python and unix calendar should have no difference in results
alias pycal = PythonCalendar
alias unixcal = UTCCalendar
tz_0_ = DateT._tz("Etc/UTC", 0, 0)
tz_1 = DateT._tz("Etc/UTC-1", 1, 0)
tz1_ = DateT._tz("Etc/UTC+1", 1, 0, -1)

dt = DateT(2022, 6, 1, tz=tz_0_, calendar=pycal) + DateT(
    2, 6, 31, tz=tz_0_, calendar=pycal
)
offset_0 = DateT(2025, 1, 1, tz=tz_0_, calendar=unixcal)
offset_p_1 = DateT(2025, 1, 1, hour=1, tz=tz_1, calendar=unixcal)
offset_n_1 = DateT(2024, 12, 31, hour=23, tz=tz1_, calendar=unixcal)
assert_equal(dt, offset_0)
assert_equal(dt, offset_p_1)
assert_equal(dt, offset_n_1)


fstr = "mojo: %Y🔥%m🤯%d"
assert_equal("mojo: 0009🔥06🤯01", DateT(9, 6, 1).strftime(fstr))
fstr = "%Y-%m-%d %H:%M:%S.%f"
ref1 = DateT(2024, 9, 9, 9, 9, 9, 9, 9)
assert_equal("2024-09-09 09:09:09.009009", ref1.strftime(fstr))


fstr = "mojo: %Y🔥%m🤯%d"
vstr = "mojo: 0009🔥06🤯01"
ref1 = DateT(9, 6, 1)
parsed = DateT.strptime(vstr, fstr)
assert_true(parsed)
assert_equal(ref1, parsed.value())
fstr = "%Y-%m-%d %H:%M:%S.%f"
vstr = "2024-09-09 09:09:09.009009"
ref1 = DateT(2024, 9, 9, 9, 9, 9, 9, 9)
parsed = DateT.strptime(vstr, fstr)
assert_true(parsed)
assert_equal(ref1, parsed.value())

socket

Plans for the socket package in Mojo's stdlib: Development is still ongoing but this will most probably get merged fast once it works.

Current outlook

Current blocker: no Mojo async, no parametrizable traits.

The idea is for the Socket struct to be the overarching API for any one platform specific socket implementation

struct Socket[
    sock_family: SockFamily = SockFamily.AF_INET,
    sock_type: SockType = SockType.SOCK_STREAM,
    sock_protocol: SockProtocol = SockProtocol.TCP,
    sock_address: SockAddr = IPv4Addr,
    sock_platform: SockPlatform = current_sock_platform(),
](CollectionElement):
    """Struct for using Sockets. In the future this struct should be able to
    use any implementation that conforms to the `SocketInterface` trait, once
    traits can be parametrized. This will allow the user to implement the
    interface for whatever functionality is missing and inject the type.

    Parameters:
        sock_family: The socket family e.g. `SockFamily.AF_INET`.
        sock_type: The socket type e.g. `SockType.SOCK_STREAM`.
        sock_protocol: The socket protocol e.g. `SockProtocol.TCP`.
        sock_address: The address type for the socket.
        sock_platform: The socket platform e.g. `SockPlatform.LINUX`.
   """
   ...

The idea is for the interface to be generic and let each implementation constraint at compile time what it supports and what it doesn't.

The Socket struct should be parametrizable with the implementation of the socket interface

socket_impl: SocketInterface = _LinuxSocket[
    sock_family, sock_type, sock_protocol, sock_address
]

What this all will allow is to build higher level pythonic syntax to do servers for any protocol and inject whatever implementation for any platform specific use case that the user does not find in the stdlib but exists in an external library.

Examples:

from forge_tools.socket import Socket


async def main():
    # TODO: once we have async generators:
    # async for conn_attempt in Socket.create_server(("0.0.0.0", 8000)):
    #     conn, addr = conn_attempt[]
    #     ...  # handle new connection

    with Socket.create_server(("0.0.0.0", 8000)) as server:
        while True:
            conn, addr = (await server.accept())[]
            ...  # handle new connection

In the future something like this should be possible:

from collections import Optional
from multiprocessing import Pool
from forge_tools.socket import Socket, IPv4Addr


async fn handler(conn_attempt: Optional[(Socket, IPv4Addr)]):
    if not conn_attempt:
        return
    conn, addr = conn_attempt.value()
    ...

async def main():
    server = Socket.create_server(("0.0.0.0", 8000))
    with Pool() as pool:
        _ = await pool.map(handler, server)