/openmm-feedstock

A conda-smithy repository for openmm.

Primary LanguageShellBSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

About openmm-feedstock

Feedstock license: BSD-3-Clause

Home: http://openmm.org

Package license: LGPL-3.0-or-later

Summary: A high performance toolkit for molecular simulation.

Development: https://github.com/openmm/openmm

Documentation: http://docs.openmm.org

OpenMM is a toolkit for molecular simulation. It can be used either as a stand-alone application for running simulations, or as a library you call from your own code. It provides a combination of extreme flexibility (through custom forces and integrators), openness, and high performance (especially on recent GPUs) that make it truly unique among simulation codes. OpenMM is MIT licensed with some LGPL portions (CUDA and OpenCL platforms).

Current build status

Azure
VariantStatus
linux_64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.22python3.10.____cpython variant
linux_64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.22python3.8.____cpython variant
linux_64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.22python3.9.____73_pypy variant
linux_64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.22python3.9.____cpython variant
linux_64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.23python3.11.____cpython variant
linux_64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.26python3.12.____cpython variant
linux_64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.22python3.10.____cpython variant
linux_64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.22python3.8.____cpython variant
linux_64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.22python3.9.____73_pypy variant
linux_64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.22python3.9.____cpython variant
linux_64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.23python3.11.____cpython variant
linux_64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.26python3.12.____cpython variant
linux_aarch64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.22python3.10.____cpython variant
linux_aarch64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.22python3.8.____cpython variant
linux_aarch64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.22python3.9.____73_pypy variant
linux_aarch64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.22python3.9.____cpython variant
linux_aarch64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.23python3.11.____cpython variant
linux_aarch64_c_compiler_version11cuda_compilernvcccuda_compiler_version11.8cxx_compiler_version11numpy1.26python3.12.____cpython variant
linux_aarch64_c_compiler_version12cuda_compilerNonecuda_compiler_versionNonecxx_compiler_version12numpy1.22python3.10.____cpython variant
linux_aarch64_c_compiler_version12cuda_compilerNonecuda_compiler_versionNonecxx_compiler_version12numpy1.22python3.8.____cpython variant
linux_aarch64_c_compiler_version12cuda_compilerNonecuda_compiler_versionNonecxx_compiler_version12numpy1.22python3.9.____73_pypy variant
linux_aarch64_c_compiler_version12cuda_compilerNonecuda_compiler_versionNonecxx_compiler_version12numpy1.22python3.9.____cpython variant
linux_aarch64_c_compiler_version12cuda_compilerNonecuda_compiler_versionNonecxx_compiler_version12numpy1.23python3.11.____cpython variant
linux_aarch64_c_compiler_version12cuda_compilerNonecuda_compiler_versionNonecxx_compiler_version12numpy1.26python3.12.____cpython variant
linux_aarch64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.22python3.10.____cpython variant
linux_aarch64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.22python3.8.____cpython variant
linux_aarch64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.22python3.9.____73_pypy variant
linux_aarch64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.22python3.9.____cpython variant
linux_aarch64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.23python3.11.____cpython variant
linux_aarch64_c_compiler_version12cuda_compilercuda-nvcccuda_compiler_version12.0cxx_compiler_version12numpy1.26python3.12.____cpython variant
osx_64_numpy1.22opencl_implapplepython3.10.____cpython variant
osx_64_numpy1.22opencl_implapplepython3.8.____cpython variant
osx_64_numpy1.22opencl_implapplepython3.9.____73_pypy variant
osx_64_numpy1.22opencl_implapplepython3.9.____cpython variant
osx_64_numpy1.22opencl_implkhronospython3.10.____cpython variant
osx_64_numpy1.22opencl_implkhronospython3.8.____cpython variant
osx_64_numpy1.22opencl_implkhronospython3.9.____73_pypy variant
osx_64_numpy1.22opencl_implkhronospython3.9.____cpython variant
osx_64_numpy1.23opencl_implapplepython3.11.____cpython variant
osx_64_numpy1.23opencl_implkhronospython3.11.____cpython variant
osx_64_numpy1.26opencl_implapplepython3.12.____cpython variant
osx_64_numpy1.26opencl_implkhronospython3.12.____cpython variant
osx_arm64_numpy1.22opencl_implapplepython3.10.____cpython variant
osx_arm64_numpy1.22opencl_implapplepython3.8.____cpython variant
osx_arm64_numpy1.22opencl_implapplepython3.9.____cpython variant
osx_arm64_numpy1.22opencl_implkhronospython3.10.____cpython variant
osx_arm64_numpy1.22opencl_implkhronospython3.8.____cpython variant
osx_arm64_numpy1.22opencl_implkhronospython3.9.____cpython variant
osx_arm64_numpy1.23opencl_implapplepython3.11.____cpython variant
osx_arm64_numpy1.23opencl_implkhronospython3.11.____cpython variant
osx_arm64_numpy1.26opencl_implapplepython3.12.____cpython variant
osx_arm64_numpy1.26opencl_implkhronospython3.12.____cpython variant
win_64_cuda_compilercuda-nvcccuda_compiler_version12.0numpy1.22python3.10.____cpython variant
win_64_cuda_compilercuda-nvcccuda_compiler_version12.0numpy1.22python3.8.____cpython variant
win_64_cuda_compilercuda-nvcccuda_compiler_version12.0numpy1.22python3.9.____73_pypy variant
win_64_cuda_compilercuda-nvcccuda_compiler_version12.0numpy1.22python3.9.____cpython variant
win_64_cuda_compilercuda-nvcccuda_compiler_version12.0numpy1.23python3.11.____cpython variant
win_64_cuda_compilercuda-nvcccuda_compiler_version12.0numpy1.26python3.12.____cpython variant
win_64_cuda_compilernvcccuda_compiler_version11.8numpy1.22python3.10.____cpython variant
win_64_cuda_compilernvcccuda_compiler_version11.8numpy1.22python3.8.____cpython variant
win_64_cuda_compilernvcccuda_compiler_version11.8numpy1.22python3.9.____73_pypy variant
win_64_cuda_compilernvcccuda_compiler_version11.8numpy1.22python3.9.____cpython variant
win_64_cuda_compilernvcccuda_compiler_version11.8numpy1.23python3.11.____cpython variant
win_64_cuda_compilernvcccuda_compiler_version11.8numpy1.26python3.12.____cpython variant

Current release info

Name Downloads Version Platforms
Conda Recipe Conda Downloads Conda Version Conda Platforms

Installing openmm

Installing openmm from the conda-forge/label/openmm_rc channel can be achieved by adding conda-forge/label/openmm_rc to your channels with:

conda config --add channels conda-forge/label/openmm_rc
conda config --set channel_priority strict

Once the conda-forge/label/openmm_rc channel has been enabled, openmm can be installed with conda:

conda install openmm

or with mamba:

mamba install openmm

It is possible to list all of the versions of openmm available on your platform with conda:

conda search openmm --channel conda-forge/label/openmm_rc

or with mamba:

mamba search openmm --channel conda-forge/label/openmm_rc

Alternatively, mamba repoquery may provide more information:

# Search all versions available on your platform:
mamba repoquery search openmm --channel conda-forge/label/openmm_rc

# List packages depending on `openmm`:
mamba repoquery whoneeds openmm --channel conda-forge/label/openmm_rc

# List dependencies of `openmm`:
mamba repoquery depends openmm --channel conda-forge/label/openmm_rc

About conda-forge

Powered by NumFOCUS

conda-forge is a community-led conda channel of installable packages. In order to provide high-quality builds, the process has been automated into the conda-forge GitHub organization. The conda-forge organization contains one repository for each of the installable packages. Such a repository is known as a feedstock.

A feedstock is made up of a conda recipe (the instructions on what and how to build the package) and the necessary configurations for automatic building using freely available continuous integration services. Thanks to the awesome service provided by Azure, GitHub, CircleCI, AppVeyor, Drone, and TravisCI it is possible to build and upload installable packages to the conda-forge anaconda.org channel for Linux, Windows and OSX respectively.

To manage the continuous integration and simplify feedstock maintenance conda-smithy has been developed. Using the conda-forge.yml within this repository, it is possible to re-render all of this feedstock's supporting files (e.g. the CI configuration files) with conda smithy rerender.

For more information please check the conda-forge documentation.

Terminology

feedstock - the conda recipe (raw material), supporting scripts and CI configuration.

conda-smithy - the tool which helps orchestrate the feedstock. Its primary use is in the construction of the CI .yml files and simplify the management of many feedstocks.

conda-forge - the place where the feedstock and smithy live and work to produce the finished article (built conda distributions)

Updating openmm-feedstock

If you would like to improve the openmm recipe or build a new package version, please fork this repository and submit a PR. Upon submission, your changes will be run on the appropriate platforms to give the reviewer an opportunity to confirm that the changes result in a successful build. Once merged, the recipe will be re-built and uploaded automatically to the conda-forge channel, whereupon the built conda packages will be available for everybody to install and use from the conda-forge channel. Note that all branches in the conda-forge/openmm-feedstock are immediately built and any created packages are uploaded, so PRs should be based on branches in forks and branches in the main repository should only be used to build distinct package versions.

In order to produce a uniquely identifiable distribution:

  • If the version of a package is not being increased, please add or increase the build/number.
  • If the version of a package is being increased, please remember to return the build/number back to 0.

Feedstock Maintainers