/zerospeech2021_baseline

BERT and LSTM baseline models of the ZeroSpeech Challenge 2021

Primary LanguagePython

ZeroSpeech Challenge 2021 Baseline System

This repository contains the baseline systems of the ZeroSpeech Challenge 2021.

The baseline system consists of 3 different componants: Unsupervised Acoustic Modeling (CPC), Clustering (k-means) and Language Modeling (BERT/LSTM) as described in The Zero Resource Speech Benchmark 2021: Metrics and baselines for unsupervised spoken language modeling.

Installation

  • First clone this repository:

    git clone https://github.com/bootphon/zerospeech2021_baseline
    cd zerospeech2021_baseline
    
  • Download the checkpoints in the checkpoints directory:

    curl https://download.zerospeech.com/2021/baseline_checkpoints.tar.gz | tar xz
    
  • Setup a conda environment:

    conda env create -f environment.yml
    
  • Activate the created environment:

    conda activate zerospeech2021_baseline
    

Submission generation

The submissions for LSTM and BERT baselines (the ones available on https://download.zerospeech.com) can be generated with the submission/run.sh script on a cluster with SLURM available. Have a ./submission/run.sh --help for details.

Evaluations

Audio quantization

First of all, we need to quantize the audio files with the CPC+clustering modules.

To quantize a set of audio files, run the scripts/quantize_audio.py script.

Example command:

python ./scripts/quantize_audio.py \
    checkpoints/CPC-big-kmeans50/clustering_kmeans50/clustering_CPC_big_kmeans50.pt \
    ../data/LibriSpeech/dev-clean/ \
    ../quantized/LibriSpeech/dev-clean/ \
    --file_extension wav

The quantized units will be written in the quantized_outputs.txt file in the output directory.

Build clustering and one-hot features for ABX

We can use the script scripts/build_CPC_features.py to extract the CPC features from a set of audio files.

Example command:

python scripts/build_CPC_features.py \
    checkpoints/CPC-big-kmeans50/CPC_big_6kh/checkpoint_32.pt \
    ../data/LibriSpeech/dev-clean/ \
    ../features/CPC/layer2/LibriSpeech/dev-clean/ \
    --file_extension flac --gru_level 2

In order to export one-hot features from a quantized_outputs.txt file, use the scripts/build_1hot_features.py script:

Example command:

python scripts/build_1hot_features.py \
    ../quantized/LibriSpeech/dev-clean/quantized_outputs.txt \
    ../features/onehot/LibriSpeech/dev-clean/

The features of each file will be stored in a corresponding file file_name.txt.

Compute pseudo log-probabilities for sWUGGY, sBLIMP

To compute the pseudo log-probabilities of pseudo-units sequences using BERT/LSTM models, use the scripts/compute_proba_BERT.py or scripts/compute_proba_LSTM.py scripts.

Example command:

python scripts/compute_proba_BERT.py \
    ../quantized/sWUGGY/dev/quantized_outputs.txt \
    ../scores/sWUGGY/dev/pseudo_log_proba.txt \
    checkpoints/CPC-big-kmeans50/BERT/BERT_CPC_big_kmeans50.pt

Build LM features for sSIMI

We can export hidden BERT/LSTM features of pseudo-units sequences with the scripts/build_BERT_features.py or scripts/build_LSTM_features.py scripts.

Example command:

python scripts/build_BERT_features.py \
    ../quantized/sSIMI/dev/quantized_outputs.txt \
    ../features/BERT/layer4/sSIMI/dev/ \
    checkpoints/CPC-big-kmeans50-BERT/BERT/BERT_CPC_big_kmeans50.pt \
    --hidden_level 4

The features of each file will be stored in a corresponding file file_name.txt.

Training the baseline system

If you want to reproduce the baseline system, please follow the instructions below.

CPC

To train the CPC model, follow the instructions at https://github.com/tuanh208/CPC_audio/tree/zerospeech

Example command:

python /path/to/CPC_audio/cpc/train.py \
    --pathDB path/to/LibriSpeech/train-clean-100 \
    --pathCheckpoint checkpoints/CPC_small_960h \
    --pathTrain path/to/LibriSpeech/LibriSpeech100_labels_split/train_split.txt \
    --pathVal path/to/LibriSpeech/LibriSpeech100_labels_split/test_split.txt \
    --file_extension .flac

where examples of train_split.txt and test_split.txt can be found here.

k-means

To train the k-means clustering, run the script clustering_script.py in the following repository CPC_audio/cpc/criterion/clustering/.

Example command:

python /path/to/CPC_audio/cpc/criterion/clustering/clustering_script.py \
    --pathDB path/to/LibriSpeech/train-clean-100/ --recursionLevel 1 \
    --nClusters 50 --MAX_ITER 150 --level_gru 2 \
    --save --load --batchSizeGPU 500 \
    checkpoints/CPC_big_6kh/checkpoint_32.pt \
    checkpoints/clustering_CPC_big_kmeans50/clustering_CPC_big_kmeans50.pt

NOTE: This command was done on a P100 16GB GPU, and the batchSizeGPU should be modified according to nClusters, so as to fit the memory. Here are the recommended numbers:

nClusters 20 50 100 200 500 2000
batchSizeGPU 500 500 300 200 100 50

Language Model

As long as we have the clustering module, we can quantize the LibriSpeech datasets and train a LM on the pseudo units.

Preprocess the data

To train fairseq's Language models, we have to first preprocess the data with fairseq-preprocess.

Example preprocess command:

fairseq-preprocess --only-source \
    --trainpref ../quantized/LibriSpeech/fairseq_train.txt \
    --validpref ../quantized/LibriSpeech/fairseq_valid_clean.txt \
    --testpref ../quantized/LibriSpeech/fairseq_test_clean.txt \
    --destdir ../fairseq-bin-data/LibriSpeech \
    --workers 20

NOTE: The data files contain only the quantized units seperated by space, without the name of the audio files. We need to convert to the right form from the outputs of the clustering_quantization.py script, e.g. 5895-34629-0032 31,13,12,12,12,...,1331 13 12 12 12 ... 13.

BERT

We train the fairseq's RoBERTa model as similar to this example, with the exception that we used spans of masks insead of single masks (with additional --mask-multiple-length and --mask-stdev options).

Example train command:

fairseq-train --fp16 ../fairseq-bin-data/LibriSpeech \
    --task masked_lm --criterion masked_lm \
    --save-dir checkpoints/BERT_CPC_big_kmeans50 \
    --keep-last-epochs 1 \
    --train-subset train \
    --num-workers 4 \
    --arch roberta_base \
    --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 --clip-norm 0.0 \
    --lr-scheduler polynomial_decay --lr 0.0005 --total-num-update 250000 --warmup-updates 10000 \
    --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
    --mask-multiple-length 10 --mask-prob 0.5 --mask-stdev 10 \
    --sample-break-mode eos --tokens-per-sample 3072 --max-positions 6144 \
    --max-tokens 4096 --update-freq 4 --max-update 250000 \
    --seed 5 --log-format simple --log-interval 10 --skip-invalid-size-inputs-valid-test

NOTE: This command was done on 32 V100 GPUs. If train on less GPUs (n GPUs), the --update-freq should be set equal to 128/n. Also, --max-tokens could be modified to fit the GPU memory accordingly.

LSTM

We can train the fairseq's LSTM Language Model with the following command:

fairseq-train --fp16 ../fairseq-bin-data/LibriSpeech \
    --task language_modeling \
    --save-dir checkpoints/LSTM_CPC_big_kmeans50 \
    --keep-last-epochs 2 \
    --tensorboard-logdir tensorboard \
    --arch lstm_lm \
    --decoder-embed-dim 200 --decoder-hidden-size 1024 --decoder-layers 3 \
    --decoder-out-embed-dim 200 \
    --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
    --lr-scheduler inverse_sqrt --lr 0.0005 --warmup-updates 1000 --warmup-init-lr 1e-07 \
    --dropout 0.1 --weight-decay 0.01 \
    --sample-break-mode none --tokens-per-sample 2048\
    --max-tokens 163840 --update-freq 1 --max-update 100000

Citation

Please consider citing this paper if it helps your research.

@misc{nguyen2020zero,
      title={The Zero Resource Speech Benchmark 2021: Metrics and baselines for unsupervised spoken language modeling}, 
      author={Tu Anh Nguyen and Maureen de Seyssel and Patricia Rozé and Morgane Rivière and Evgeny Kharitonov and Alexei Baevski and Ewan Dunbar and Emmanuel Dupoux},
      year={2020},
      eprint={2011.11588},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}