RMOA allows to interface R with MOA (http://moa.cms.waikato.ac.nz/).
RMOA interfaces with MOA version 2014.04. Documentation of MOA directed towards RMOA users can be found at http://jwijffels.github.io/RMOA/
Currently RMOA focusses on classification models (as the stream package in R already allows clustering). Classification models which are possible through RMOA are:
- Classification trees:
- AdaHoeffdingOptionTree
- ASHoeffdingTree
- DecisionStump
- HoeffdingAdaptiveTree
- HoeffdingOptionTree
- HoeffdingTree
- LimAttHoeffdingTree
- RandomHoeffdingTree
- Bayesian classification:
- NaiveBayes
- NaiveBayesMultinomial
- Active learning classification:
- ActiveClassifier
- Ensemble (meta) classifiers:
- Bagging
- LeveragingBag
- OzaBag
- OzaBagAdwin
- OzaBagASHT
- Boosting
- OCBoost
- OzaBoost
- OzaBoostAdwin
- Stacking
- LimAttClassifier
- Other
- AccuracyUpdatedEnsemble
- AccuracyWeightedEnsemble
- ADACC
- DACC
- OnlineAccuracyUpdatedEnsemble
- TemporallyAugmentedClassifier
- WeightedMajorityAlgorithm
- Bagging
Streaming regression models are also included namely
- Rules:
- TargetMean and FadingTargetMean
- Perceptron
- AMRulesRegressor
- Trees:
- FIMTDD
- ORTO
- Functions
- SGD (Stochastic gradient descent)
Streaming recommendation engines which are made available are
- BaselinePredictor
- BRISMFPredictor
The package is currently available at CRAN.
To install the latest development version from github
library(devtools)
install.packages("ff")
install.packages("rJava")
install_github("jwijffels/RMOA", subdir="RMOAjars/pkg")
install_github("jwijffels/RMOA", subdir="RMOA/pkg")
Examples below show how to construct, train and score using a HoeffdingTree and boosted ensemble of HoeffdingTree.
require(RMOA)
## Create a HoeffdingTree
hdt <- HoeffdingTree(numericEstimator = "GaussianNumericAttributeClassObserver")
hdt
## Define a stream - e.g. a stream based on a data.frame
data(iris)
iris <- factorise(iris)
irisdatastream <- datastream_dataframe(data=iris)
## Train the HoeffdingTree on the iris dataset
mymodel <- trainMOA(model = hdt,
formula = Species ~ Sepal.Length + Sepal.Width + Petal.Length,
data = irisdatastream)
## Predict using the HoeffdingTree on the iris dataset
scores <- predict(mymodel, newdata=iris, type="response")
str(scores)
table(scores, iris$Species)
scores <- predict(mymodel, newdata=iris, type="votes")
head(scores)
##
## Boosting example
##
irisdatastream$reset()
mymodel <- OzaBoost(baseLearner = "trees.HoeffdingTree", ensembleSize = 30)
mymodel <- trainMOA(model = mymodel,
formula = Species ~ Sepal.Length + Sepal.Width + Petal.Length,
data = irisdatastream)
## Predict using the HoeffdingTree on the iris dataset
scores <- predict(mymodel, newdata=iris, type="response")
str(scores)
table(scores, iris$Species)
scores <- predict(mymodel, newdata=iris, type="votes")
head(scores)
##
## Streaming regressions and streaming recommendation engines. Examples can be found in the documentation
##
?trainMOA.MOA_regressor
?trainMOA.MOA_recommender
Data streams are implemented for classic data in R (data.frame, matrix), data in files (csv, delimited, flat table) as well as out-of memory data in an ffdf (ff package).
Currently the following MOA models are not (yet) implemented in RMOA.
- Multilabel, drift, functions, rules classifiers
- Outlier detection
- Clustering