/hurstjit

Hurst exponent evaluation and R/S-analysis in Python

Primary LanguagePythonMIT LicenseMIT

hurstjit

Hurst exponent evaluation and R/S-analysis

Python 3x Build Status

hurstjit is a small Python module for analysing random walks and evaluating the Hurst exponent (H).

H = 0.5 — Brownian motion,
0.5 < H < 1.0 — persistent behavior,
0 < H < 0.5 — anti-persistent behavior.

Installation

Install hurstjit module with pip install git+https://github.com/maxisoft/hurstjit

Note

This is a fork from Mottl/hurst which use numba jit in order to get great performance boost.
Exemple code is more than 100x time faster (timeit from 1.67 sec to 12.2 ms)

Usage

import numpy as np
import matplotlib.pyplot as plt
from hurstjit import compute_Hc, random_walk

# Use random_walk() function or generate a random walk series manually:
# series = random_walk(99999, cumprod=True)
np.random.seed(42)
random_changes = 1. + np.random.randn(99999) / 1000.
series = np.cumprod(random_changes)  # create a random walk from random changes

# Evaluate Hurst equation
H, c, data = compute_Hc(series, kind='price', simplified=True)

# Plot
f, ax = plt.subplots()
ax.plot(data[0], c * data[0] ** H, color="deepskyblue")
ax.scatter(data[0], data[1], color="purple")
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('Time interval')
ax.set_ylabel('R/S ratio')
ax.grid(True)
plt.show()

print("H={:.4f}, c={:.4f}".format(H, c))

R/S analysis

H=0.4964, c=1.4877

Kinds of series

The kind parameter of the compute_Hc function can have the following values:
'change': a series is just random values (i.e. np.random.randn(...))
'random_walk': a series is a cumulative sum of changes (i.e. np.cumsum(np.random.randn(...)))
'price': a series is a cumulative product of changes (i.e. np.cumprod(1+epsilon*np.random.randn(...))

Brownian motion, persistent and antipersistent random walks

You can generate random walks with random_walk() function as following:

Brownian

brownian = random_walk(99999, proba=0.5)

Brownian motion

Persistent

persistent = random_walk(99999, proba=0.7)

Persistent random walk

Antipersistent

antipersistent = random_walk(99999, proba=0.3)

Antipersistent random walk