/GEMBA

GEMBA — GPT Estimation Metric Based Assessment

Primary LanguagePythonCreative Commons Attribution Share Alike 4.0 InternationalCC-BY-SA-4.0

GEMBA

Setup

Install required packages with python >= 3.8

pip install -r requirements.txt

Get mt-metric-eval and download resources:

git clone https://github.com/google-research/mt-metrics-eval.git
cd mt-metrics-eval
pip install .
alias mtme='python3 -m mt_metrics_eval.mtme'
mtme --download
cd ..
mv ~/.mt-metrics-eval/mt-metrics-eval-v2 mt-metrics-eval-v2

Update credentials in CREDENTIALS.py with your own.

Running GEMBA

python main.py

Evaluate scores

export PYTHONPATH=mt-metrics-eval:$PYTHONPATH
python evaluate.py

License

GEMBA code and data are released under the CC BY-SA 4.0 license.

Paper

You can read more about GEMBA in our arXiv paper.

How to Cite

@misc{https://doi.org/10.48550/arxiv.2302.14520,
  doi = {10.48550/ARXIV.2302.14520},
  url = {https://arxiv.org/abs/2302.14520},
  author = {Kocmi, Tom and Federmann, Christian},
  keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {Large Language Models Are State-of-the-Art Evaluators of Translation Quality},
  publisher = {arXiv},
  year = {2023},
  copyright = {Creative Commons Attribution 4.0 International}
}