Yue Ma*, Hongyu Liu*, Hongfa Wang*, Heng Pan*, Yingqing He, Junkun Yuan, Ailing Zeng, Chengfei Cai, Heung-Yeung Shum, Wei Liu and Qifeng Chen
is Accpeted by Siggraph Asia 2024
- [2024.07.31] ๐ฅ Release
OpenXLab
, thanks for keyhsw development! - [2024.07.21] ๐ฅ Release
Colab
, thanks for daswer123! - [2024.07.18] ๐ฅ Release
inference code
,config
andcheckpoints
! - [2024.06.07] ๐ฅ Release Paper and Project page!
We present Follow-Your-Emoji, a diffusion-based framework for portrait animation, which animates a reference portrait with target landmark sequences.
pip install -r requirements.txt
[FollowYourEmoji] We also provide our pretrained checkpoints in Huggingface. you could download them and put them into checkpoints folder to inference our model.
- base model: lambdalabs/sd-image-variations-diffusers
- vae: sd-vae-ft-mse
- AnimateDiff: AnimateDiff
Finally, these pretrained models should be organized as follows:
pretrained_models
โโโ AnimateDiff
โ โโโ mm_sd_v15_v2.ckpt
โโโ follow-your-emoji
โ โโโ lmk_guider.pth
โ โโโ referencenet.pth
โ โโโ unet.pth
โโโ sd-image-variations-diffusers
โ โโโ alias-montage.jpg
โ โโโ default-montage.jpg
โ โโโ earring.jpg
โ โโโ feature_extractor
โ โ โโโ preprocessor_config.json
โ โโโ image_encoder
โ โ โโโ config.json
โ โ โโโ pytorch_model.bin
โ โโโ inputs.jpg
โ โโโ model_index.json
โ โโโ README.md
โ โโโ safety_checker
โ โ โโโ config.json
โ โ โโโ pytorch_model.bin
โ โโโ scheduler
โ โ โโโ scheduler_config.json
โ โโโ unet
โ โ โโโ config.json
โ โ โโโ diffusion_pytorch_model.bin
โ โโโ v1-montage.jpg
โ โโโ v2-montage.jpg
โ โโโ vae
โ โโโ config.json
โ โโโ diffusion_pytorch_model.bin
โโโ sd-vae-ft-mse
โโโ config.json
โโโ diffusion_pytorch_model.bin
โโโ diffusion_pytorch_model.safetensors
โโโ README.md
bash infer.sh
CUDA_VISIBLE_DEVICES=0 python3 -m torch.distributed.run \
--nnodes 1 \
--master_addr $LOCAL_IP \
--master_port 12345 \
--node_rank 0 \
--nproc_per_node 1 \
infer.py \
--config ./configs/infer.yaml \
--model_path /path/to/model \
--input_path your_own_images_path \
--lmk_path ./inference_temple/test_temple.npy \
--output_path your_own_output_path
You can make your own emoji using our model. First, you need to make your emoji temple using MediaPipe. We provide the script in make_temple.ipynb
. You can replace the video path with your own emoji video and generate the .npy
file.
CUDA_VISIBLE_DEVICES=0 python3 -m torch.distributed.run \
--nnodes 1 \
--master_addr $LOCAL_IP \
--master_port 12345 \
--node_rank 0 \
--nproc_per_node 1 \
infer.py \
--config ./configs/infer.yaml \
--model_path /path/to/model \
--input_path your_own_images_path \
--lmk_path your_own_temple_path \
--output_path your_own_output_path
Follow-Your-Pose: Pose-Guided text-to-Video Generation.
Follow-Your-Click: Open-domain Regional image animation via Short Prompts.
Follow-Your-Handle: Controllable Video Editing via Control Handle Transformations.
Follow-Your-Emoji: Fine-Controllable and Expressive Freestyle Portrait Animation.
If you find Follow-Your-Emoji useful for your research, welcome to ๐ this repo and cite our work using the following BibTeX:
@article{ma2024follow,
title={Follow-Your-Emoji: Fine-Controllable and Expressive Freestyle Portrait Animation},
author={Ma, Yue and Liu, Hongyu and Wang, Hongfa and Pan, Heng and He, Yingqing and Yuan, Junkun and Zeng, Ailing and Cai, Chengfei and Shum, Heung-Yeung and Liu, Wei and others},
journal={arXiv preprint arXiv:2406.01900},
year={2024}
}