Create the environment:
conda env create -f play_env.yml
source activate playground
Create a training set:
python train.py -n 100000 -v 1000 -f config-erik.json --create
Train the ML model:
python train.py -n 100000 -v 1000 -f config-erik.json
Note: See the following example to call a fit from code insteand of using the refl1d client: https://github.com/pozzo-research-group/c-wolf-blends-morphology/blob/master/sans/PS_Fitting/Polystyrene_Fits.ipynb
TODO:
- Add more layers
- Get rid of post-processing to get proper sld
- Add full SLD to reconstruction loss
- Add q resolution
- Check max thickness and get rid of model and generate another one.