/ppq

PPL Quantization Tool (PPQ) is a powerful offline neural network quantization tool.

Primary LanguagePythonApache License 2.0Apache-2.0

PPL Quantization Tool 0.6.6(PPL 量化工具)

无标题

PPQ 是一个高效的工业级神经网络量化工具。 PPQ 被设计为一个灵活而全面的 Onnx 模型量化工具,我们允许你控制对量化进行细致入微的控制,同时严格控制硬件模拟误差。PPQ 有着自定义的量化算子库、网络执行器、神经网络调度器、量化计算图等独特设计,这些组件专为量化而设计,共同构成了这一先进神经网络量化框架。我们将与你一起把人工智慧带到千家万户之间。

目前 PPQ 使用 onnx(opset 11 ~ 13) 模型文件作为输入,覆盖常用的 90 余种 onnx 算子类型。如果你是 Pytorch, tensorflow 的用户,你可以使用这些框架提供的方法将模型转换到 onnx。PPQ 支持向 TensorRT, OpenPPL, Openvino, ncnn, Onnxruntime, Tengine, Snpe, GraphCore 等多个推理引擎生成目标文件并完成部署。PPQ 提供强大的自定义功能,你可以将 PPQ 的量化能力扩展到其他可能的硬件与推理库上。

在 0.6.6 的版本更新中,我们为你带来了这些功能:

  1. FP8 量化规范,PPQ 现在支持 E4M3, E5M2 等多种规范的 FP8 量化模拟与训练
  2. PFL 基础类库,PPQ 现在提供一套更为基础的 api 函数帮助你完成更为灵活的量化
  3. 更为强大的 图模式匹配图融合功能
  4. 全新的 TensorRT 量化与导出逻辑
  5. 更多正在更新的样例脚本及视频内容
  6. 其他未知的软件特性

Learning Path 学习路线

PPQ 基础用法及示例脚本

Description 介绍 Link 链接
01 欢迎,在第一部分的内容中,我们首先向你展示如何使用 ppq 量化来自 pytorch, onnx, caffe 的模型 onnx, caffe, pytorch
02 接下来让我们看看如何执行量化后的模型 executor
03 渐入佳境,让我们试着使用 PPQ 的误差分析功能 analyser
04 我的网络误差很高?让我们调整校准算法来尝试降低误差 calibration
05 进一步降低量化误差,为什么不让我们对网络展开进一步的训练? finetune
06 让我们看看 PPQ 的图调度功能能帮我们做什么 dispatch
07 最佳实践!向你展示模型在 PPQ 中的量化流程 Best Practice
08 创建我们自己的量化规则!了解目标平台与量化器 platform
09 自定义量化优化过程 Optim
10 自定义图融合过程与量化管线 Fusion

PPQ 优化过程文档

Description 介绍 Link 链接
01 QuantSimplifyPass(通用量化精简过程) doc
02 QuantFusionPass(通用量化图融合过程) doc
03 QuantAlignmentPass(通用量化对齐过程) doc
04 RuntimeCalibrationPass(参数校准过程) doc
05 BiasCorrectionPass(Bias修正过程) doc
06 QuantSimplifyPass(通用量化精简过程) doc
07 LayerwiseEqualizationPass(层间权重均衡过程) doc
08 LayerSpilitPass(算子分裂过程) doc
09 LearnedStepSizePass(网络微调过程) doc
10 Other(其他) refer to

量化入门视频

Desc 介绍 Link 链接
01 计算机体系结构基础知识 link
02 网络性能分析 link
03 量化计算原理 part1, part2
04 图优化与量化模拟 link
05 图调度与模式匹配 link
06 神经网络部署 link
07 量化参数选择 link
08 量化误差传播分析 link

量化部署教程

使用例子(Examples) 网络部署平台(Platform) 输入模型格式(Format) 链接(Link) 相关视频(Video)
TensorRT
使用 Torch2trt 加速你的网络 pytorch pytorch link link
TensorRT 量化训练 TensorRT pytorch link link
TensorRT 后训练量化(PPQ) TensorRT onnx

1. Quant with TensorRT OnnxParser

2. Quant with TensorRT API

TensorRT fp32 部署 TensorRT onnx link link
TensorRT 性能比较 TensorRT pytorch link link
TensorRT Profiler TensorRT pytorch link link
onnxruntime
使用 onnxruntime 加速你的网络 onnxruntime onnx link link
onnx 后训练量化(PPQ) onnxruntime onnx link link
onnxruntime 性能比较 onnxruntime pytorch link link
openvino
使用 openvino 加速你的网络 openvino onnx link
openvino 量化训练 openvino pytorch link
openvino 后训练量化(PPQ) openvino onnx link
openvino 性能比较 openvino pytorch link
snpe
snpe 后训练量化(PPQ) snpe caffe link
ncnn
ncnn 后训练量化(PPQ) ncnn onnx link
OpenPPL
ppl cuda 后训练量化(PPQ) ppl cuda onnx link

额外内容

使用例子(Examples) 网络部署平台(Platform) 输入模型格式(Format) 链接(Link) 相关视频(Video)
注册量化代理函数 - pytorch link
自定义量化算子 - pytorch link
绕过与量化无关的算子 - pytorch link
onnx 格式转换 - onnx link
Yolo
使用 TensorRT 推理 Yolo 模型 TensorRT onnx link link
使用 PPQ 量化 Yolo TensorRT pytorch link link
分析 Yolo 量化性能 TensorRT onnx benckmark, profiler link
尝试修改 Yolo 量化策略以提高性能 TensorRT onnx link link

Dive into PPQ 深入理解量化框架

Desc 介绍 Link 链接
01 PPQ 量化执行流程 link
02 PPQ 网络解析 link
03 PPQ 量化图调度 link
04 PPQ 目标平台与 TQC link
05 PPQ 量化器 link
06 PPQ 量化优化过程 link
07 PPQ 量化函数 link

Installation

To release the power of this advanced quantization tool, at least one CUDA computing device is required. Install CUDA from CUDA Toolkit, PPL Quantization Tool will use CUDA compiler to compile cuda kernels at runtime.

ATTENTION: For users of PyTorch, PyTorch might bring you a minimized CUDA libraries, which will not satisfy the requirement of this tool, you have to install CUDA from NVIDIA manually.

ATTENTION: Make sure your Python version is >= 3.6.0. PPL Quantization Tool is written with dialects that only supported by Python >= 3.6.0.

  • Install dependencies:

    • For Linux User, use following command to install ninja:
    sudo apt install ninja-build
    • For Windows User:
      • Download ninja.exe from https://github.com/ninja-build/ninja/releases, add it to Windows PATH Environment
      • Download Visual Studio 2019 from https://visualstudio.microsoft.com, if you already got a c++ compiler, you can skip this step.
      • Add your c++ compiler to Windows PATH Environment, if you are using Visual Studio, it should be something like "C:\Program Files\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.16.27023\bin\Hostx86\x86"
      • Update pytorch to 1.10+.

There are three ways to install ppq

  • Install PPQ from source:

Run following code with your terminal(For windows user, use command line instead).

git clone https://github.com/openppl-public/ppq.git
cd ppq
pip install -r requirements.txt
python setup.py install
export PYTHONPATH=${PWD}:${PYTHONPATH}
  • Install PPQ from our docker image:
docker pull stephen222/ppq:ubuntu18.04_cuda11.4_cudnn8.4_trt8.4.1.5

docker run -it --rm --ipc=host --gpus all --mount type=bind,source=your custom path,target=/workspace stephen222/ppq:ubuntu18.04_cuda11.4_cudnn8.4_trt8.4.1.5 /bin/bash

git clone https://github.com/openppl-public/ppq.git
cd ppq
export PYTHONPATH=${PWD}:${PYTHONPATH}
  • Install PPQ from Pip:

Note that this installation method currently does not support tensorrt write parameter quantization, we haven't updated yet. Wait for Python finish its installation and pray for bug free. pre-built wheels are maintained in PPQ, you could simply install ppq with the following command(You should notice that install from pypi might get an outdated version ....)

python3 -m pip install ppq

Contact Us

WeChat Official Account QQ Group
OpenPPL 627853444
OpenPPL QQGroup

Email: openppl.ai@hotmail.com

Other Resources

Contributions

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion.

If you plan to contribute new features, utility functions, or extensions to the core, please first open an issue and discuss the feature with us. Sending a PR without discussion might end up resulting in a rejected PR because we might be taking the core in a different direction than you might be aware of.

Benchmark

PPQ is tested with models from mmlab-classification, mmlab-detection, mmlab-segamentation, mmlab-editing, here we listed part of out testing result.

  • No quantization optimization procedure is applied with following models.
Model Type Calibration Dispatcher Metric PPQ(sim) PPLCUDA FP32
Resnet-18 Classification 512 imgs conservative Acc-Top-1 69.50% 69.42% 69.88%
ResNeXt-101 Classification 512 imgs conservative Acc-Top-1 78.46% 78.37% 78.66%
SE-ResNet-50 Classification 512 imgs conservative Acc-Top-1 77.24% 77.26% 77.76%
ShuffleNetV2 Classification 512 imgs conservative Acc-Top-1 69.13% 68.85% 69.55%
MobileNetV2 Classification 512 imgs conservative Acc-Top-1 70.99% 71.1% 71.88%
---- ---- ---- ---- ---- ---- ---- ----
retinanet Detection 32 imgs pplnn bbox_mAP 36.1% 36.1% 36.4%
faster_rcnn Detection 32 imgs pplnn bbox_mAP 36.6% 36.7% 37.0%
fsaf Detection 32 imgs pplnn bbox_mAP 36.5% 36.6% 37.4%
mask_rcnn Detection 32 imgs pplnn bbox_mAP 37.7% 37.6% 37.9%
---- ---- ---- ---- ---- ---- ---- ----
deeplabv3 Segamentation 32 imgs conservative aAcc / mIoU 96.13% / 78.81% 96.14% / 78.89% 96.17% / 79.12%
deeplabv3plus Segamentation 32 imgs conservative aAcc / mIoU 96.27% / 79.39% 96.26% / 79.29% 96.29% / 79.60%
fcn Segamentation 32 imgs conservative aAcc / mIoU 95.75% / 74.56% 95.62% / 73.96% 95.68% / 72.35%
pspnet Segamentation 32 imgs conservative aAcc / mIoU 95.79% / 77.40% 95.79% / 77.41% 95.83% / 77.74%
---- ---- ---- ---- ---- ---- ---- ----
srcnn Editing 32 imgs conservative PSNR / SSIM 27.88% / 79.70% 27.88% / 79.07% 28.41% / 81.06%
esrgan Editing 32 imgs conservative PSNR / SSIM 27.84% / 75.20% 27.49% / 72.90% 27.51% / 72.84%
  • PPQ(sim) stands for PPQ quantization simulator's result.
  • Dispatcher stands for dispatching policy of PPQ.
  • Classification models are evaluated with ImageNet, Detection and Segamentation models are evaluated with COCO dataset, Editing models are evaluated with DIV2K dataset.
  • All calibration datasets are randomly picked from training data.

License

This project is distributed under the Apache License, Version 2.0.