安装完成后,下载训练好的models(在英文版readme.md),然后运行 inference_demo.py to run a quick demo.
# multiple GPUs trainng
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM}
Example:
./tools/dist_train.sh configs/solo/solo_r50_fpn_8gpu_1x.py 8
# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} --show --out ${OUTPUT_FILE} --eval segm
Example:
./tools/dist_test.sh configs/solo/solo_r50_fpn_8gpu_1x.py SOLO_R50_1x.pth 8 --show --out results_solo.pkl --eval segm
# single GPU training
python tools/train.py ${CONFIG_FILE}
Example:
python tools/train.py configs/solo/solo_r50_fpn_8gpu_1x.py
## single-gpu testing
python tools/test_ins.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --show --out ${OUTPUT_FILE} --eval segm
Example:
python tools/test_ins.py configs/solo/solo_r50_fpn_8gpu_1x.py SOLO_R50_1x.pth --show --out results_solo.pkl --eval segm
python tools/test_ins_vis.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --show --save_dir ${SAVE_DIR}
Example:
python tools/test_ins_vis.py configs/solo/solo_r50_fpn_8gpu_1x.py SOLO_R50_1x.pth --show --save_dir work_dirs/vis_solo
安装以下包
- Linux (只支持linux)
- Python 3.5+
- PyTorch 1.1 or higher
- CUDA 9.0 or higher
- NCCL 2
- GCC 4.9 or higher
- mmcv 0.2.16
我用的:
- Python 3.6
- PyTorch 1.4
- CUDA 10.1
- mmcv 0.2.16
- 安装新环境
conda create -n solo python=3.6
conda activate solo
- 安装cudatoolkit和cudnn
conda install cudatoolkit=10.1 cudnn
- 安装PyTorch 和 torchvision
conda install pytorch=1.4 torchvision
- mmcv 0.2.16
pip install mmcv==0.2.16
- 安装SOLO包
git clone https://github.com/WXinlong/SOLO.git
cd SOLO
pip install -r requirements/build.txt
# 安装pycocotools(如果装不上就下下来,cd到PythonAPI文件夹,pip install setup.py)
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
# 安装SOLO,倒腾完了
pip install -v -e . # or "python setup.py develop"
SOLO以dev模式安装,对代码所做的任何本地修改都将生效,无需重新安装(除非您提交了一些提交并希望更新版本号)。
建议将数据集根目录符号链接到“$SOLO/data”。 如果文件夹结构不同,需要更改配置文件中相应的路径。
SOLO
├── mmdet
├── tools
├── configs
├── data
│ ├── coco
│ │ ├── annotations
│ │ ├── train2017
│ │ ├── val2017
│ │ ├── test2017
│ ├── cityscapes
│ │ ├── annotations
│ │ ├── train
│ │ ├── val
│ ├── VOCdevkit
│ │ ├── VOC2007
│ │ ├── VOC2012
For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact Xinlong Wang and Chunhua Shen.