Sponsored by Mercoa, the API for BillPay and Invoicing. Everything you need to launch accounts payable in your product with a single API!
LLM Based OCR and Document Parsing for Node.js. Uses GPT4 and Claude3 for OCR and data extraction.
- Converts PDFs (including multi page PDFs) into PNGs for use with GPT4
- Automatically crops white-space to create smaller inputs
- Cleans up JSON string returned by the LLM and converts it to an JSON object
- Custom prompt support for capturing any data you need
Supports:
- ✅ PNG
- ✅ WEBP
- ✅ JPEG / JPG
- ✅ GIF
- ✅ Multi-page PDF
- ❌ DOC
- ❌ DOCX
npm i --save llm-document-ocr
yarn add llm-document-ocr
Note: If you are deploying via Docker, see the Dockerfile for an example Alpine base image.
import { DocumentOcr, prompts } from "llm-document-ocr";
const documentOcr = new DocumentOcr({
apiKey: 'YOUR-OpenAi/Anthropic-API-KEY' // required, defaults to process.env.OPENAI_API_KEY. OpenAI models need an OpenAI API key, Antrhopic models need an Anthropic API key.
model: "gpt-4o", // optional, defaults to "gpt-4-turbo". Options are: "gpt-4-turbo", "gpt-4o", "claude-3-opus-20240229", "claude-3-sonnet-20240229", "claude-3-haiku-20240307"
standardFontDataUrl: "https://unpkg.com/pdfjs-dist@3.2.146/standard_fonts/", // optional, defaults to "https://unpkg.com/pdfjs-dist@3.2.146/standard_fonts/". You can use the systems fonts or the fonts under ./node_modules/pdfjs-dist/standard_fonts/ as well.
});
const documentData = await documentOcr.process({
model: "gpt-4o", // optional, defaults to model defined in constructor
document: 'JVBERi0xLjMNCiXi48/TDQoNCjEgMCBvYmoNCjw8DQ...', // Base64 String, Base64 URI, or Buffer
mimeType: 'application/pdf', // mime-type of the document or image
prompt: 'invoiceStartDate, invoiceEndDate, amount', // system prompt for data extraction. See examples below.
pageOptions: 'FIRST_AND_LAST' // optional, defaults to 'ALL'. Determines which page of the PDF will be processed. Available options are 'ALL', 'FIRST_AND_LAST', 'FIRST', 'LAST'.
})
Prompts will be automatically prefixed to tell the LLM to return JSON. You will need to specify the data you wish to extract, and the LLM will return a JSON object with those keys.
For example, the prompt we use at Mercoa for invoice processing is the following:
`invoice number, invoice amount, currency (as ISO 4217 code), dueDate, invoiceDate, serviceStartDate, serviceEndDate,
vendor's [name, email with @, website],
line items [amnt, price, qty, des, name, cur (as ISO 4217 code)]`;
And this returns a JSON object that looks like:
{
invoiceNumber?: string | number
invoiceAmount?: string | number
currency?: string
dueDate?: string
invoiceDate?: string
serviceStartDate?: string
serviceEndDate?: string
vendor: {
name?: string
email?: string
website?: string
}
lineItems: Array<{
des?: string
qty?: string | number
price?: string | number
amnt?: string | number
name?: string
cur?: string
}>
}
If you encounter a bug or want to see something added/changed, please go ahead and open an issue
If you wish to contribute to the library, thanks! Please see the CONTRIBUTING guide for more details.
MIT © Mercoa, Inc