/meshplex

:spider_web: Compute interesting points, areas, and volumes in simplex meshes of any dimension.

meshplex

Fast tools for simplex meshes.

PyPi Version PyPI pyversions GitHub stars PyPi downloads

Discord

Compute all sorts of interesting points, areas, and volumes in simplex (triangle, tetrahedral, n-simplex) meshes of any dimension, with a focus on efficiency. Useful in many contexts, e.g., finite-element and finite-volume computations.

Installation

Install meshplex from PyPI with

pip install meshplex

For full usage of meshplex, you require a license. Licenses for personal and academic use can be purchased here. For more info, see here.

Quickstart

meshplex can compute the following data:

import meshplex

# create a simple Mesh instance
points = [[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]]
cells = [[0, 1, 2]]
mesh = meshplex.Mesh(points, cells)
# or read it from a file
# mesh = meshplex.read("pacman.vtk")

# triangle volumes, heights
print(mesh.cell_volumes)
print(mesh.signed_cell_volumes)
print(mesh.cell_heights)

# circumcenters, centroids, incenters
print(mesh.cell_circumcenters)
print(mesh.cell_centroids)
print(mesh.cell_incenters)

# circumradius, inradius, cell quality
print(mesh.cell_circumradius)
print(mesh.cell_inradius)
print(mesh.q_radius_ratio)  # d * inradius / circumradius (min 0, max 1)

# control volumes, centroids
print(mesh.control_volumes)
print(mesh.control_volume_centroids)

# covolume/edge length ratios
print(mesh.ce_ratios)

# count Delaunay violations
print(mesh.num_delaunay_violations)

# removes some cells
mesh.remove_cells([0])

For triangular meshes (MeshTri), meshplex also has some mesh manipulation routines:

mesh.show()  # show the mesh
mesh.angles  # compute angles
mesh.flip_until_delaunay()  # flips edges until the mesh is Delaunay

For a documentation of all classes and functions, see readthedocs.

(For mesh creation, check out this list).

Plotting

Triangles

import meshplex

mesh = meshplex.read("pacman.vtk")
mesh.show(
    # show_coedges=True,
    # control_volume_centroid_color=None,
    # mesh_color="k",
    # nondelaunay_edge_color=None,
    # boundary_edge_color=None,
    # comesh_color=(0.8, 0.8, 0.8),
    show_axes=False,
)

Tetrahedra

import numpy as np
import meshplex

# Generate tetrahedron
points = np.array(
    [
        [1.0, 0.0, -1.0 / np.sqrt(8)],
        [-0.5, +np.sqrt(3.0) / 2.0, -1.0 / np.sqrt(8)],
        [-0.5, -np.sqrt(3.0) / 2.0, -1.0 / np.sqrt(8)],
        [0.0, 0.0, np.sqrt(2.0) - 1.0 / np.sqrt(8)],
    ]
) / np.sqrt(3.0)
cells = [[0, 1, 2, 3]]

# Create mesh object
mesh = meshplex.MeshTetra(points, cells)

# Plot cell 0 with control volume boundaries
mesh.show_cell(
    0,
    # barycenter_rgba=(1, 0, 0, 1.0),
    # circumcenter_rgba=(0.1, 0.1, 0.1, 1.0),
    # circumsphere_rgba=(0, 1, 0, 1.0),
    # incenter_rgba=(1, 0, 1, 1.0),
    # insphere_rgba=(1, 0, 1, 1.0),
    # face_circumcenter_rgba=(0, 0, 1, 1.0),
    control_volume_boundaries_rgba=(1.0, 0.0, 0.0, 1.0),
    line_width=3.0,
)