Forpy allows you to use Python features in Fortran ("embedding Python in Fortran")
It provides datastructures such as list, dict, tuple and interoperability of arrays using numpy. With forpy you can even import Python modules in Fortran. Simply use your own or third-party Python modules for tasks that you can easily do in Python. For example: plot with matplotlib or use scientific functions from scipy or numpy.
Forpy also works to other way around: You can write Python modules entirely in Fortran (extending Python with Fortran - "Fortran in Python").
- This readme (start with that)
- Wiki
- API reference
Elias Rabel (ylikx.0 AT gmail.com)
A simple example using a Python list:
program intro_to_forpy
use forpy_mod
implicit none
integer :: ierror
type(list) :: my_list
ierror = forpy_initialize()
ierror = list_create(my_list)
ierror = my_list%append(19)
ierror = my_list%append("Hello world!")
ierror = my_list%append(3.14d0)
ierror = print_py(my_list)
call my_list%destroy
call forpy_finalize
end program
Building the example:
To try the examples, copy the file forpy_mod.F90
to your working directory.
Here I assume that you are using Python 3 (version >= 3.3) and
gfortran (ifort also supported).
If you are using Anaconda and have problems when building read Using forpy with Anaconda.
For use with Python 2 read Python 2 support.
Save the example as intro_to_forpy.F90
and type:
gfortran -c forpy_mod.F90
gfortran intro_to_forpy.F90 forpy_mod.o `python3-config --ldflags`
Then run the example with
./a.out
You should get the output:
[19, 'Hello world!', 3.14]
If python3-config
is not found, you might have to install the package python3-dev
(on Ubuntu, Debian).
For simplicity this example and most following examples do not contain error handling code.
This example introduces tuples and shows how to check for basic Python types.
It demonstrates the methods getitem
and setitem
, which also work
with list
. These methods are generic for important Fortran types.
The type object
can be used for any Python object. Use cast
to transform an
object
into a Fortran type or to transform into
a more specific Python object, such as list
or tuple
.
program tuple_example
use forpy_mod
implicit none
integer :: ierror
type(tuple) :: tu
type(object) :: item
integer :: int_value
character(len=:), allocatable :: str_value
integer :: ii
integer :: tu_len
ierror = forpy_initialize()
! Python: tu = (17, "hello", 23, "world")
ierror = tuple_create(tu, 4) ! create tuple with 4 elements
! Must set all tuple elements before using tuple
ierror = tu%setitem(0, 17)
ierror = tu%setitem(1, "hello")
ierror = tu%setitem(2, 23)
ierror = tu%setitem(3, "world")
ierror = tu%len(tu_len)
do ii = 0, tu_len-1 ! Python indices start at 0
ierror = tu%getitem(item, ii)
! Use is_int, is_str, is_float, is_none ...
! to check if an object is of a certain Python type
if (is_int(item)) then
! Use cast to transform 'item' into Fortran type
ierror = cast(int_value, item)
write(*,*) int_value
else if(is_str(item)) then
ierror = cast(str_value, item)
write(*,*) str_value
endif
call item%destroy
enddo
call tu%destroy
call forpy_finalize
end program
The following example shows how to use a Python dict
and shows some
error and exception handling.
program dict_example
use forpy_mod
implicit none
integer :: ierror
type(dict) :: di
real :: a_value
ierror = forpy_initialize()
ierror = dict_create(di) ! Python: di = {}
ierror = di%setitem("temperature", 273.0)
ierror = di%setitem("pressure", 1013.0)
ierror = di%getitem(a_value, "pressure")
write(*,*) "pressure = ", a_value
! Show some error handling
ierror = di%getitem(a_value, "does not exist")
if (ierror /= 0) then
if (exception_matches(KeyError)) then
write(*,*) "Key not found..."
! Must clear error after handling exception,
! if we want to continue with program!
call err_clear
else
write(*,*) "Unknown error..."
stop
endif
endif
! alternative to getitem: get - returns given default value if key
! not found, no KeyError exception raised
ierror = di%get(a_value, "volume", 1.0)
write(*,*) "volume = ", a_value
call di%destroy
call forpy_finalize
end program
The following demo, shows how to use a module from Python's standard
library and introduces call_py
, which is used to call Python methods and
to instantiate Python objects.
program date_demo
use forpy_mod
implicit none
integer :: ierror
type(module_py) :: datetime
type(object) :: date, today, today_str
character(len=:), allocatable :: today_fortran
! Python:
! import datetime
! date = datetime.date
! today = date.today()
! today_str = today.isoformat()
! print("Today is ", today_str)
ierror = forpy_initialize()
ierror = import_py(datetime, "datetime")
ierror = datetime%getattribute(date, "date")
ierror = call_py(today, date, "today")
ierror = call_py(today_str, today, "isoformat")
ierror = cast(today_fortran, today_str)
write(*,*) "Today is ", today_fortran
call datetime%destroy
call date%destroy
call today%destroy
call today_str%destroy
call forpy_finalize
end program
For Python to import a module that is not in one of the standard search
directories, you can set the environment variable PYTHONPATH
:
export PYTHONPATH=$PYTHONPATH:path_to_my_python_module
Alternatively, you can use forpy's get_sys_path
function to retrieve and modify the list
of Python module search paths, as shown in the following example.
We want to import the following small Python module:
# File: mymodule.py
def print_args(*args, **kwargs):
print("Arguments: ", args)
print("Keyword arguments: ", kwargs)
return "Returned from mymodule.print_args"
Now we use the module in Fortran, assuming that mymodule.py
is in the current
working directory:
program mymodule_example
use forpy_mod
implicit none
integer :: ierror
type(tuple) :: args
type(dict) :: kwargs
type(module_py) :: mymodule
type(object) :: return_value
type(list) :: paths
character(len=:), allocatable :: return_string
ierror = forpy_initialize()
! Instead of setting the environment variable PYTHONPATH,
! we can add the current directory "." to sys.path
ierror = get_sys_path(paths)
ierror = paths%append(".")
ierror = import_py(mymodule, "mymodule")
! Python:
! return_value = mymodule.print_args(12, "Hi", True, message="Hello world!")
ierror = tuple_create(args, 3)
ierror = args%setitem(0, 12)
ierror = args%setitem(1, "Hi")
ierror = args%setitem(2, .true.)
ierror = dict_create(kwargs)
ierror = kwargs%setitem("message", "Hello world!")
ierror = call_py(return_value, mymodule, "print_args", args, kwargs)
ierror = cast(return_string, return_value)
write(*,*) return_string
! For call_py, args and kwargs are optional
! use call_py_noret to ignore the return value
! E. g.:
! ierror = call_py_noret(mymodule, "print_args")
call args%destroy
call kwargs%destroy
call mymodule%destroy
call return_value%destroy
call paths%destroy
call forpy_finalize
end program
Forpy offers interoperability of Fortran arrays and numpy arrays through
the type ndarray
. In the
following examples, you will see various ways to create a numpy array.
The simplest way to create a numpy array is with ndarray_create
. This
function creates a numpy array with the same content as a Fortran array that is
passed to the function. For example:
program ndarray01
use forpy_mod
implicit none
integer, parameter :: NROWS = 2
integer, parameter :: NCOLS = 3
integer :: ierror, ii, jj
real :: matrix(NROWS, NCOLS)
type(ndarray) :: arr
ierror = forpy_initialize()
do jj = 1, NCOLS
do ii = 1, NROWS
matrix(ii, jj) = real(ii) * jj
enddo
enddo
! creates a numpy array with the same content as 'matrix'
ierror = ndarray_create(arr, matrix)
ierror = print_py(arr)
call arr%destroy
call forpy_finalize
end program
When arrays get very large, creating a copy might not be what you want. The next section describes how to wrap a Fortran array with forpy without making a copy.
When creating a numpy array with ndarray_create_nocopy
, no copy of the Fortran
array is made. This is more efficient than ndarray_create
, but there are
some things to consider: Changes to the Fortran array affect the numpy array
and vice versa. You have to make sure that the Fortran array is valid
as long as the numpy array is in use.
Since the Fortran array can now be modified not
only directly but also indirectly by the ndarray
, it is necessary to
add the asynchronous
attribute to the Fortran array declaration, since
without it compiler optimization related bugs
can occur (depending on code, compiler and compiler options).
Alternatively you could also use the volatile
attribute.
program ndarray02
use forpy_mod
implicit none
integer, parameter :: NROWS = 2
integer, parameter :: NCOLS = 3
integer :: ierror, ii, jj
! add the asynchronous attribute to the Fortran array that is wrapped
! as ndarray to avoid bugs caused by compiler optimizations
real, asynchronous :: matrix(NROWS, NCOLS)
type(ndarray) :: arr
ierror = forpy_initialize()
do jj = 1, NCOLS
do ii = 1, NROWS
matrix(ii, jj) = real(ii) * jj
enddo
enddo
! creates a numpy array that refers to 'matrix'
ierror = ndarray_create_nocopy(arr, matrix)
ierror = print_py(arr)
matrix(1,1) = 1234.0 ! Change also affects 'arr'
ierror = print_py(arr)
call arr%destroy
call forpy_finalize
end program
The following example shows how to access the data of a ndarray with
the method ndarray%get_data
. It also shows how to return a ndarray
from a subroutine without using a copy of a Fortran array.
We create a new ndarray
with the function ndarray_create_empty
,
specifying the shape of the array.
In this case storage is allocated and managed by Python. Memory is freed, when
there is no reference to the ndarray anymore (don't forget to call the destroy
method).
You can also create an array of zeros with ndarray_create_zeros
and an array
of ones with ndarray_create_ones
.
To edit the values of the array, use the Fortran
pointer returned from ndarray%get_data
.
! Example of how to return a ndarray from a subroutine
program ndarray03
use forpy_mod
use iso_fortran_env, only: real64
implicit none
integer :: ierror
type(ndarray) :: arr
ierror = forpy_initialize()
call create_matrix(arr)
ierror = print_py(arr)
call arr%destroy
call forpy_finalize
CONTAINS
subroutine create_matrix(arr)
type(ndarray), intent(out) :: arr
integer :: ierror, ii, jj
integer, parameter :: NROWS = 2
integer, parameter :: NCOLS = 3
real(kind=real64), dimension(:,:), pointer :: matrix
ierror = ndarray_create_empty(arr, [NROWS, NCOLS], dtype="float64")
!Use ndarray%getdata to access the content of a numpy array
!from Fortran
!type of matrix must be compatible with dtype of ndarray
!(here: real(kind=real64) and dtype="float64")
ierror = arr%get_data(matrix)
do jj = 1, NCOLS
do ii = 1, NROWS
matrix(ii, jj) = real(ii, kind=real64) * jj
enddo
enddo
end subroutine
end program
This example puts together, what you have learnt so far and demonstrates a simple way to do complete error handling and some exception handling. Save the file with an uppercase .F90 extension, since it uses a C preprocessor macro for error handling.
#define errcheck if(ierror/=0) then;call err_print;stop;endif
program matplotlib_example
use forpy_mod
implicit none
integer :: ierror, ii
real, parameter :: PI = 3.1415927
integer, parameter :: NPOINTS = 200
real :: x(NPOINTS)
real :: y(NPOINTS)
do ii = 1, NPOINTS
x(ii) = ((ii-1) * 2. * PI)/(NPOINTS-1)
y(ii) = sin(x(ii))
enddo
ierror = forpy_initialize()
! forpy_initialize returns NO_NUMPY_ERROR if numpy could not be imported
! You could still use forpy without the array features, but here we need them.
if (ierror == NO_NUMPY_ERROR) then
write(*,*) "This example needs numpy..."
stop
endif
errcheck
call simple_plot(x, y)
call forpy_finalize
CONTAINS
subroutine simple_plot(x, y)
real, asynchronous, intent(in) :: x(:)
real, asynchronous, intent(in) :: y(:)
integer :: ierror
type(module_py) :: plt
type(tuple) :: args
type(ndarray) :: x_arr, y_arr
ierror = import_py(plt, "matplotlib.pyplot")
! You can also test for certain exceptions
if (ierror /= 0) then
if (exception_matches(ImportError)) then
write(*,*) "This example needs matplotlib..."
stop
else
call err_print
stop
endif
endif
ierror = ndarray_create_nocopy(x_arr, x)
errcheck
ierror = ndarray_create_nocopy(y_arr, y)
errcheck
ierror = tuple_create(args, 2)
errcheck
ierror = args%setitem(0, x_arr)
errcheck
ierror = args%setitem(1, y_arr)
errcheck
ierror = call_py_noret(plt, "plot", args)
errcheck
ierror = call_py_noret(plt, "show")
errcheck
call x_arr%destroy
call y_arr%destroy
call args%destroy
call plt%destroy
end subroutine
end program
As we have seen in previous sections you can convert between types with
the cast
interface.
The cast
function has a rather strict behaviour, when casting between
types: For example it gives an error, when you try to convert a
Python float to an integer or a list to a tuple.
Use cast_nonstrict
if you need more flexibility: it does these type
conversion when possible. For example:
program cast_nonstrict_demo
use forpy_mod
implicit none
type(object) :: obj
character(len=:), allocatable :: fstr
integer :: an_int
integer :: ierror
ierror = forpy_initialize()
ierror = cast(obj, 3.14d0) !creates a Python float
ierror = cast(an_int, obj) !FAIL: strict cast float->integer
call err_print !show and clear error
ierror = cast(fstr, obj) !FAIL: obj is a number, not a string
call err_print !show and clear error
ierror = cast_nonstrict(an_int, obj) !OK, truncates float (an_int = 3)
ierror = cast_nonstrict(fstr, obj) !OK, result is string "3.14"
write(*,*) an_int
write(*,*) fstr
call obj%destroy
call forpy_finalize
end program
Requirements: Python version >= 2.7
For Python 2 support, you have to define the preprocessor macro PYTHON2 (compiler option -DPYTHON2).
gfortran -c -DPYTHON2 forpy_mod.F90
gfortran intro_to_forpy.F90 forpy_mod.o `python2-config --ldflags`
Note that here, you use python2-config.
If python2-config
is not present on your system, install the package
python-dev
(Ubuntu, Debian).
On a 32-bit system use the macro PYTHON2_32
gfortran -c -DPYTHON2_32 forpy_mod.F90
gfortran intro_to_forpy.F90 forpy_mod.o `python2-config --ldflags`
On a narrow Python 2 build (Windows, Mac?), add PYTHON_NARROW:
gfortran -c -DPYTHON2 -DPYTHON_NARROW forpy_mod.F90
gfortran intro_to_forpy.F90 forpy_mod.o `python2-config --ldflags`
"Narrow" Python builds use 2 bytes for Unicode characters, wereas "wide" builds use 4 bytes. This distinction is not relevant when using forpy with Python 3.
With forpy, you can not only use Python from Fortran, but also write Python modules in Fortran, using all the Python datatypes you like.
Note that now we have to build a shared library and the commands for
building are different.
Save the example below as extexample01.F90
and build with:
gfortran -c -fPIC forpy_mod.F90
gfortran -shared -fPIC -o extexample01.so extexample01.F90 forpy_mod.o
The following module extexample01
will have one method print_args
and a
numerical constant pi
as members:
module extexample01
use forpy_mod
use iso_c_binding
implicit none
! You need to declare exactly one PythonModule and PythonMethodTable
! at Fortran module level
type(PythonModule), save :: mod_def
type(PythonMethodTable), save :: method_table
CONTAINS
! Initialisation function for Python 3
! called when importing module
! must use bind(c, name="PyInit_<module name>")
! return value must be type(c_ptr), use the return value of PythonModule%init
function PyInit_extexample01() bind(c, name="PyInit_extexample01") result(m)
type(c_ptr) :: m
m = init()
end function
! Initialisation function for Python 2
! called when importing module
! must use bind(c, name="init<module name>")
! Initialisation function for Python 2
! called when importing module
! must be called init<module name>
subroutine initextexample01() bind(c, name="initextexample01")
type(c_ptr) :: m
m = init()
end subroutine
function init() result(m)
type(c_ptr) :: m
integer :: ierror
type(object) :: pi
ierror = forpy_initialize()
call method_table%init(1) ! module shall have 1 method
! must add function print_args to method table to be able to use it in Python
call method_table%add_method("print_args", & ! method name
"Prints arguments and keyword arguments", & !doc-string
METH_VARARGS + METH_KEYWORDS, & ! this method takes arguments AND keyword arguments
c_funloc(print_args)) ! address of Fortran function to add
m = mod_def%init("extexample01", "A Python extension with a method and a member.", method_table)
! Example: Numerical constant as member of module
ierror = cast(pi, 3.141592653589793d0)
ierror = mod_def%add_object("pi", pi)
call pi%destroy
end function
! Implementation of our Python method
!
! Corresponding Python method shall allow arguments and keyword arguments
! -> We need 3 "type(c_ptr), value" arguments
! First arg is c_ptr to module, second is c_ptr to argument tuple
! third is c_ptr to keyword argument dict
! Return value must be type(c_ptr)
! bind(c) attribute to make sure that C calling conventions are used
function print_args(self_ptr, args_ptr, kwargs_ptr) result(r) bind(c)
type(c_ptr), value :: self_ptr
type(c_ptr), value :: args_ptr
type(c_ptr), value :: kwargs_ptr
type(c_ptr) :: r
type(tuple) :: args
type(dict) :: kwargs
type(NoneType) :: retval
integer :: ierror
! use unsafe_cast_from_c_ptr to cast from c_ptr to tuple/dict
call unsafe_cast_from_c_ptr(args, args_ptr)
call unsafe_cast_from_c_ptr(kwargs, kwargs_ptr)
if (is_null(kwargs)) then
! This is a check if keyword argument were passed to this function.
! If is_null(kwargs), kwargs is not a valid Python object, therefore
! we initialise it as an empty dict
ierror = dict_create(kwargs)
endif
ierror = print_py(args)
ierror = print_py(kwargs)
! You always need to return something, at least None
ierror = NoneType_create(retval)
r = retval%get_c_ptr() ! need return value as c_ptr
call args%destroy
call kwargs%destroy
end function
end module
Python code to test the module:
import extexample01
extexample01.print_args("hello", 42, key="abc")
print(extexample01.pi)
cd tests
make clean
make runtests
For ifort use make FC=ifort
and for testing with Python 2 use make PY_VERSION=2
, e. g.
for ifort and Python 2:
make PY_VERSION=2 FC=ifort
Forpy is created from a template file. Therefore do not edit
forpy_mod.F90, but only forpy_mod.fypp
. This template file has to be preprocessed using
Balint Aradi's fypp.
Assuming that you have fypp in your current directory, type (use Python 2 when running fypp.py)
python2 fypp.py forpy_mod.fypp forpy_mod.F90
You can create documentation from the source code with Chris MacMackin's FORD documentation generator:
ford forpy_project.md
When using a debug build of Python, one has to define the preprocessor macro Py_DEBUG
when compiling forpy.
You can run the forpy test suites such that the difference of the total reference count of Python objects before and after each test is printed. This helps with detecting reference counting bugs. To do this you need a debug build of Python and a debug build of numpy. Then build the tests with:
cd tests
make clean
make PY_DEBUG=1
If the difference in total reference count is non-zero, the difference is printed before the test status. A non-zero difference in total reference count does not necessarily mean that there is an error, for example due to internal caching or deleted objects. On the other hand, a difference of zero does not guarantee absence of reference count errors.
When using forpy with Anaconda and gfortran, you might encounter the following error:
/usr/bin/x86_64-linux-gnu-ld: error: lto-wrapper failed
collect2: error: ld returned 1 exit status
- A solution to this problem is to add the
-fno-lto
(disable link-time optimisation) compiler flag in the linking step:
gfortran -c forpy_mod.F90
gfortran intro_to_forpy.F90 forpy_mod.o -fno-lto `python3-config --ldflags`
- OR: Another solution is to use the
gfortran
compiler provided by the Anaconda distribution. (Install on Linux withconda install gfortran_linux-64
)