Martin Gütlein 05.03.2013
project to apply multi-label-classification
evaluates a multi-label-classification approach via crossvalidation, stores the results in the file mlc.results
params:
-e endpoint-file
-f feature-file
-a mlc-algorithm [ECC,BR]
-n num-endpoints [all or numeric]
-i imputation [OFF,ON]
-m num-missing-allowed, [all or numeric], exclusive with imputation on
--num-cores (default: 1)
--cv-start-seed (default: 0)
--cv-end-seed, exclusive (default: 3)
--classifier [SMO(default)|RandomForest]
- output is appended to mlc.results (old mlc.results is zipped to zip/mlc.results)
- the mlc.results file contains params and results.
- params: endpoint-file, feature-file, mlc-algorithm, mlc-algorithm-params, num-enpoints, imputation-param, num-missing-allowed, classifier, classifier-params, max-num-instances, num-instances, max-num-labels, num-labels cv-seed
- results: run-time, hamming-loss, subset-accuracy, ...
compares results with different values for evaluation-param (stored in mlc.results), creates html-report with tables and figures
-e evaluation-param
-o output-file
--omit, omits result-row that match param-value combination, comma separated hash
--fix, omits result-row that NOT match param-value combination, comma separated hash
--omit-param, omits result-column, comma seperated list
example:
compare binary relevance for different endpoint files using all endpoints
eval_mlc.rb -e endpoint-file -o compare_endpoints_files_BR.html --fix=mlc-algorithm:ECC,num-endpoints=all