/dibbler

Investigation of food-borne disease outbreaks

Primary LanguageHTML

Travis-CI Build Status Build status codecov

dibbler: investigation of food-borne disease outbreaks

And then you bit onto them, and learned once again that Cut-me-own-Throat Dibbler could find a use for bits of an animal that the animal didn't know it had got. Dibbler had worked out that with enough fried onions and mustard people would eat anything. [Terry Pratchett, Moving Pictures.]

dibbler provides tools for investigating food-borne outbreaks with (at least partly) known food distribution networks, and genetic information on the cases. This document provides an overview of the package's content.

Installing dibbler

To install the development version from github:

library(devtools)
install_github("thibautjombart/dibbler")

The stable version can be installed from CRAN using:

install.packages("dibbler")

Then, to load the package, use:

library("dibbler")

A short demo

Here is a short demonstration of the package using an anonymised Salmonella outbreak dataset, distributed in the outbreaks package as s_enteritidis_pt59. The function make_dibbler will match the structure of the network and the case data, and create a dibbler object:

library("outbreaks")

names(s_enteritidis_pt59$graph)
## [1] "from" "to"
head(s_enteritidis_pt59$graph)
##     from     to
## 1 2e7967 dd73b6
## 2 2e7967 c7cd02
## 3 2e7967 2afba4
## 4 2e7967 4df851
## 5 2e7967 48f980
## 6 2e7967 2d3187
dim(s_enteritidis_pt59$graph)
## [1] 103   2
s_enteritidis_pt59$cluster
## d81c17 064974 3b712b 486c07 6f5824 c77a84 1f4d22 f951d8 44060b 905296 
##      A      A      A      A      A      A      A      A      A      A 
## b4e5d5 0fffca 78e5ba e45c54 ca432a 0b6e5a ef7028 732379 82b4fc 9199be 
##      A      B      B      B      B      B      B      B      B      B 
## cede47 9f5aad acf7bb 24876f 37aad9 1e7431 0b57e4 09f4a0 a6fcaf f59e4b 
##      B      C      C      C      C      C      C      C      C      C 
## 1b55d2 7d3df0 b08945 f80b2e efee6b 6e0643 252679 35a9b6 80afad 1569a5 
##      C      C      A      A      A      A      A      A      A      A 
## 161814 c09e12 38881f 
##      A      A      A 
## Levels: A B C
case_data <- with(s_enteritidis_pt59, 
                  data.frame(id = names(cluster), cluster = cluster))
head(case_data)
##            id cluster
## d81c17 d81c17       A
## 064974 064974       A
## 3b712b 3b712b       A
## 486c07 486c07       A
## 6f5824 6f5824       A
## c77a84 c77a84       A
x <- make_dibbler(net = s_enteritidis_pt59$graph, nodes_data = case_data)
x
## 
## /// Foodborne outbreak //
## 
##   // class: dibbler, epicontacts
##   // 43 cases in linelist; 103 edges;  directed 
## 
##   // linelist
## 
##            id cluster
## d81c17 d81c17       A
## 064974 064974       A
## 3b712b 3b712b       A
## 486c07 486c07       A
## 6f5824 6f5824       A
## c77a84 c77a84       A
## 
##   // network
## 
##     from     to
## 1 2e7967 dd73b6
## 2 2e7967 c7cd02
## 3 2e7967 2afba4
## 4 2e7967 4df851
## 5 2e7967 48f980
## 6 2e7967 2d3187
## 
##  // node types
##     2e7967     cd48bf     dd73b6     7ba446     642cb4     c7cd02 
##    "entry" "internal" "internal" "internal" "internal" "internal" 
##     5b44d7     2afba4     fc7f8f     963c41     f60e85     4941c6 
## "internal" "internal"    "entry" "internal" "internal" "internal" 
##     53d0b4     13dc78     9c0e59     6ddfa3     3301f4     874918 
##    "entry" "internal" "internal" "internal"    "entry" "internal" 
##     f46d1e     0b6e5a     c190fa     337cac     03eee3     c1dc98 
## "internal" "internal"    "entry" "internal" "internal" "internal" 
##     a7a903     d2d08f     030327     6d4b91     76a432     7fa3b1 
## "internal"    "entry" "internal" "internal" "internal" "internal" 
##     f83f2e     881955     e42c72     4df851     d4d75e     7be343 
## "internal" "internal" "internal" "internal" "internal" "internal" 
##     735807     238842     3e93ce     f7fc94     8e02f0     b16cf0 
## "internal"    "entry" "internal" "internal" "internal" "internal" 
##     51ca98     81e071     dc72e8     4e2918     2fabc7     ad208a 
## "internal" "internal" "internal" "internal" "internal" "internal" 
##     48f980     24dba7     327734     4e8dc8     206e37     958de8 
## "internal" "internal" "internal" "internal" "internal" "internal" 
##     2d3187     7d21f1     acf7bb     9f5aad     0b57e4     78e5ba 
## "internal" "internal" "terminal" "terminal" "terminal" "terminal" 
##     ca432a     e45c54     80afad     cede47     82b4fc     732379 
## "terminal" "terminal" "terminal" "terminal" "terminal" "terminal" 
##     9199be     7d3df0     c77a84     6f5824     3b712b     1e7431 
## "terminal" "terminal" "terminal" "terminal" "terminal" "terminal" 
##     37aad9     44060b     905296     f951d8     b4e5d5     1b55d2 
## "terminal" "terminal" "terminal" "terminal" "terminal" "terminal" 
##     a6fcaf     24876f     0fffca     09f4a0     38881f     d81c17 
## "terminal" "terminal" "terminal" "terminal" "terminal" "terminal" 
##     1569a5     064974     161814     c09e12     b08945     f80b2e 
## "terminal" "terminal" "terminal" "terminal" "terminal" "terminal" 
##     35a9b6     6e0643     efee6b     252679     f59e4b     ef7028 
## "terminal" "terminal" "terminal" "terminal" "terminal" "terminal" 
##     1f4d22     486c07 
## "terminal" "terminal"

The resulting object is an extension of epicontact objects; for more information on these objects, and how to handle them, see the epicontacts website.

Here we plot the object, asking to use "cluster" to define colored groups:

plot(x, "cluster")

This is a screenshot of the actual image, which needs to be visualised on a web broswer. Groups are indicated in colors, while different types of nodes are indicated with different symbols:

  • entry nodes: 'origins' of the network, indicated by targets; typically farms

  • internal nodes: nodes located inside the network, indicated as buildings; typically factories or restaurants; note that if the network indicates person-to-person transmission, then internal nodes could be cases as well

  • terminal nodes: nodes located at the periphery of the network, indicated as people; typically cases