Using a Minimal PyTorch Implementation of the Hierarchical Probabilistic U-Net.
Part 1: Source Reconstruction |
Part 2: Rescue the Randomness |
📽️ Access Recording of the Talk Presented at the KITP Program on Building a Physical Understanding of Galaxy Evolution with Data-driven Astronomy
- 1806.05034 Original Probabilistic U-Net Paper (Kohl et al. 2018) + GitHub Repo
- 1905.13077 Original Hierarchical Probabilistic U-Net Paper (Kohl et al. 2019) + GitHub Repo
- 1903.10145 Paper on KL Vanishing and Cyclical Beta Schedule (Fu, Li, et al. 2019)
- 1810.00597 Paper on GECO Loss (Rezende and Viola 2018)
- 2302.03026 Novel Method for Coverage Probability Test (Lemos et al. 2023)
- Link to Blog Post on Understanding Variational Autoencoders (VAEs) (Joseph Rocca)
- Link to Blog Post on Conditional Variational Autoencoders (Isaac Dykeman)