Generates anisotropic and rotation Plummer models, see Breen, Varri & Heggie (2019) for details.
Modified by Michael Petersen for object-oriented maximalism and a direct interface with EXP.
Quickstart Example:
$./PlummerPlus.py -n 10000 -q -6 -o outputfile -v
Dejonghe (1987) anisotropic q=-6.0 Plummer model with N = 10000 (random seed 101)
rh = 7.722e-01 K.E. = 2.482e-01 vt^2 = 4.138e-01 vr^2 = 8.267e-02
1-0.5*<vt^2>/<vr^2> = -1.503e+00
2.0Tr/Tp = 0.4 (Polyachenko and Shukhman 1981, crit value 1.7 +/- 0.25)
L = [1.568e-03,-1.123e-03,1.566e-03] |L|=2.484e-03 nf=0
T_phi/|pot| = 2.642e-03, (assuming pot = 0.5, see ostriker & peebles 1973, 0.14 +/- 0.03)
See the complete list of arguments in args.py.
A laundry list of examples:
# isotropic plummmer with 8K particles
./PlummerPlus.py -n 8192
# 8k anisotropic plummer with Dejonghe with q=-2 (see Dejonghe 1987)
./PlummerPlus.py -n 8192 -q -2
# 8k Osipkov-Merritt radially anisotropic plummer with anisotropic radius ra=1.0 (see e.g. merritt, d. 1985. aj, 90, 1027)
./PlummerPlus.py -n 8192 -ra 1.0
# 8k Einstein sphere i.e. plummer model with only circular orbits
./PlummerPlus.py -n 8192 -e
# 8K isotropic plummmer with rotation via Lynden-Bell trick i.e. reverse velocities of 50% particles with L_z < 0
./PlummerPlus.py -n 8192 -a 0.5
# 8K isotropic plummmer with offset rotation, 50% of the most bound stars rotating about z-axis
# least bound 50% rotating is offset by 90 degrees (i.e. about y-axis).
# Note most stars use -a for the fraction of stars reverse where as least bound stars use second value in -oa flag (i.e. -oa angle flipfraction)
./PlummerPlus.py -n 8192 -a 1.0 -oa 90.0 1.0 0.5
# for a high shear model, set offset to 180 degree (i.e. -z) and used mass fraction 0.67
# (i.e. rotation model with 0 net L!)
./PlummerPlus.py -n 10000 -a 1.0 -oa 180.0 1.0 0.67
# create mass segregated model most bound 50% of the mass consisting of particles 10.0 times more massive then the least
./PlummerPlus.py -n 10000 -ms 0.5 10.0
- Ansiotropic models of Dejonghe (1987), tangential and radial velocity anisotropy
- Osipkov-Merritt model radial velocity anisotropy
- Rotation introduced via the Lyden-Bell trick (and generalisations)
- use
-h
for full list of options
- include embedded Plummer models using Eddington Formula
- Kroupa IMF (plus evolution with SSE)
- Check that very negative q values don't fail from hypergeometric functions