huggingface transformers教程
- 00-认识transformers.ipynb:Huggingface
tokenizer;model
- 01-sentiment-analysis-with-bert:情感分类
分类任务
- 02-Guide to HuggingFace Schedulers & Differential LRs:学习率指南
使用技巧
- 03-企业隐患huggingface baseline:企业隐患文本分类
分类任务
- 04-toxic_multilabel.ipynb :言论多标签分类
多标签分类
- 05-Fine_tune_ALBERT_sentence_pair_classification:句子对分类
文本对分类
- 06-Multimodal_product_classification:多模态分类
多模态-文本和图像
- 07-RoBERTa on NSP using Trainer:NSP预训练
预训练-Next Sentence Prediction
- 08-utilizing-transformer-representations-efficiently.ipynb:不同层的使用
微调-layers
- 09-RoBERTa Base Fine-Tuning with Better Training Strategies:不同学习率使用
微调-learning rate
- 10-pytorch-roberta-pretrain.ipynb:预训练模型继续训练
预训练-ITPT
- 11-best-transformer-representations.ipynb:不同层的使用
微调-layers
- 12-How to Fine-Tune BERT for Text Classification.ipynb:文本分类上分技巧:
论文
- 13-Custom_Named_Entity_Recognition_with_BERT.ipynb:命名实体识别:
NER
- 14-Multiple_choice_on_SWAG:多项选择:
MRC
- 15-Translation.ipynb:机器翻译:
NMT
- 16-Summarization.ipynb:文本摘要:
text summary
- 17-bertviz_examples.ipynb:Bert可视化:
Bert可视化