Description:
- gets image produced by indexer (normalized_iages) and stores that in Azure Storage
- returns image content and URL to blob
Languages:
Products:
- azure-cognitive-search
- Azure-Functions
This function requires two appsettings to save the extracted images on an Azure Blob Storage. -RECOMMENDED-
If you want to save a base64 encoded image version in the Azure AI Search index the settings are not required.
"blob_storage_connection_string": "DefaultEndpointsProtocol=https;AccountName=YOUR_BLOB_ACCOUNT_NAME;AccountKey=YOUR_BLOB_ACCOUNT_KEY;EndpointSuffix=core.windows.net",
"blob_storage_container": "image-segmentation-skillset-image-projection" // OR ANY OTHER CONTAINER NAME
- Create a Python Function in Azure, for example this is a good starting point
- Clone this repository
- Open the folder in VS Code and deploy the function, find here a tutorial
- Add a field in your index where you will dump the enriched classes, more info here
- Add the skill to your skillset as described below
- Add the output field mapping in your indexer as seen in the sample
- Run the indexer
You can find a sample input for the skill here
{
"values": [
{
"recordId": "e1",
"data": {
"images": [
{
"$type": "file",
"url": "optional",
"data": "/9j/4AAQSkZx... ",
"width": 1224,
"height": 1584,
"originalWidth": 1224,
"originalHeight": 1584,
"rotationFromOriginal": 0,
"contentOffset": 4132,
"pageNumber": 2,
"contentType": "image/jpeg"
}
]
}
}
]
}
{
"values": [
{
"recordId": "e1",
"data": {
"normalized_images_merged": [
{
"$type": "file",
"contentType": "image/jpeg",
"data": "/9j/4A...",
"height": 128,
"width": 187,
"pageNumber": 2,
"image_url" : "https:// (optional. only if defined app settings)"
},
{
"$type": "file",
"contentType": "image/jpeg",
"data": "/9j/4A...",
"height": 128,
"width": 187,
"pageNumber": 2,
"image_url" : "https:// (optional. only if defined app settings)"
}
]
}
}
]
}
In order to use this skill in a AI search pipeline, you'll need to add a skill definition to your skillset. Here's a sample skill definition for this example (inputs and outputs should be updated to reflect your particular scenario and skillset environment):
{
"@odata.type": "#Microsoft.Skills.Custom.WebApiSkill",
"name": "#x",
"description": "Custom skill for image segmentation",
"context": "/document",
"uri": "https://my-func.azurewebsites.net/api/imagesegment?code= ",
"httpMethod": "POST",
"timeout": "PT30S",
"batchSize": 1,
"degreeOfParallelism": null,
"inputs": [
{
"name": "images",
"source": "/document/normalized_images/*"
}
],
"outputs": [
{
"name": "normalized_images_merged",
"targetName": "subimages"
}
],
"httpHeaders": {}
},
The skill emits an array of base64 images extracted for the pages.
The skill emits also an array of image urls if you do not want to store the base64 image within the index.
In both cases, other subfields like image height, etc can be persisted too
{
"name": "subimageb64",
"type": "Collection(Edm.String)",
"facetable": false,
"filterable": false,
"retrievable": true,
"searchable": false,
"analyzer": null,
"indexAnalyzer": null,
"searchAnalyzer": null,
"synonymMaps": [],
"fields": []
}
{
"name": "subimageurls",
"type": "Collection(Edm.String)",
"facetable": false,
"filterable": false,
"retrievable": true,
"searchable": false,
"analyzer": null,
"indexAnalyzer": null,
"searchAnalyzer": null,
"synonymMaps": [],
"fields": []
}
Note that the function receives a base64 encoded representation of the image, processes it and returns a set of base64 subimages and image urls pointing to an Azure Blob Storage (only if Azure Function app settings are correctly configured)
"outputFieldMappings": [
{
"sourceFieldName": "/document/merged_content",
"targetFieldName": "merged_content"
},
...
{
"sourceFieldName": "/document/subimages/*/data",
"targetFieldName": "subimageb64"
}
...
{
"sourceFieldName": "/document/subimages/*/image_data",
"targetFieldName": "subimageurls"
}